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A quantitative version of an inequality obtained in [8, Theorem 2.1] is given. More precisely, for normalized
K quasiconformal harmonic mappings of the unit disk onto a Jordan domain Ω ∈ C1,µ (0 < µ ≤ 1) we give
an explicit Lipschitz constant depending on the structure of Ω and on K. In addition we give a characterization
of q.c. harmonic mappings of the unit disk onto an arbitrary Jordan domain with C2,α boundary in terms
of boundary function using the Hilbert transformations. Moreover it is given a sharp explicit quasiconformal
constant in terms of the boundary function.
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1 Introduction and auxiliary results

Let A =
(
a11 a12

a21 a22

)
. We will consider the matrix norm:

|A| = max{|Az| : z ∈ R2, |z| = 1}

and the matrix function
l(A) = min{|Az| : |z| = 1}.

Let w = u + iv : D → G, D,G ⊂ C, have partial derivative at z ∈ D. By ∇w(z) we denote the matrix(
ux uy
vx vy

)
. For the matrix∇w we have

|∇w| = |wz|+ |wz̄| (1.1)

and
l(∇w) = ||wz| − |wz̄||,

where

wz :=
1
2

(
wx +

1
i
wy

)
and wz̄ :=

1
2

(
wx −

1
i
wy

)
.

A sense-preserving homeomorphism w : D → G, where D and G are subdomains of the complex plane C,
is said to be K-quasiconformal (K-q.c), K ≥ 1, if w is absolutely continuous on a.e. horizontal and a.e. vertical
line and

|∇w| ≤ Kl(∇w) a.e. on D. (1.2)

Notice that, condition (1.2) can be written as

|wz̄| ≤ k|wz| a.e. on D where k =
K − 1
K + 1

i.e. K =
1 + k

1− k
,
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2 Kalaj: Quasiconformal harmonic mappings

or in its equivalent form∣∣∣∣∂w∂r
∣∣∣∣2 +

1
r2

∣∣∣∣∂w∂ϕ
∣∣∣∣2 ≤ 1

2
(K +

1
K

)Jw (z = reiϕ), (1.3)

where Jw is the Jacobian of w (cf. [1], pp. 23–24). Finally the last is equivalent to:

1
K
≤

∣∣∣∣∣ r∂w∂r∂w
∂ϕ

∣∣∣∣∣ ≤ K.
This implies the inequality

1
r2

(1 +
1
K2

)
∣∣∣∣∂w∂ϕ

∣∣∣∣2 ≤ KJw (z = reiϕ). (1.4)

A function w is called harmonic in a region D if it has form w = u+ iv where u and v are real-valued harmonic
functions in D. If D is simply-connected, then there are two analytic functions g and h defined on D such that w
has the representation

w = g + h.

If w is a harmonic univalent function, then by Lewy’s theorem (see [14]), w has a non-vanishing Jacobian and
consequently, according to the inverse mapping theorem, w is a diffeomorphism. If k is an analytic function and
w is a harmonic function then w ◦ k is harmonic. However k ◦ w, in general is not harmonic.

Let

P (r, x− ϕ) =
1− r2

2π(1− 2r cos(x− ϕ) + r2)

denote the Poisson kernel. Then every bounded harmonic function w defined on the unit disc U := {z : |z| < 1}
has the following representation

w(z) = P [wb](z) =
∫ 2π

0

P (r, x− ϕ)wb(eix)dx, (1.5)

where z = reiϕ and wb is a bounded integrable function defined on the unit circle S1 := {z : |z| = 1}.
In this paper we continue to establish Lipschitz and co-Lipschitz character of q.c. harmonic mappings between

smooth domains. This class contains conformal mappings. The conformal case is well-known ([13], [23], [21],
[3], [18]) but it seems only here we yield an explicit constant even for conformal case.

The first result in the area of q.c. harmonic mappings was established by O. Martio ([16]). Recently there are
several papers with deals with topic ([4]-[10], [19]-[20]). See also [22] for the similar problem of hyperbolic q.c.
harmonic mappings of the unit disk.

It is worth to mention the following fact, q.c. harmonic mappings share with conformal mappings the following
property (a result of M. Mateljevic and P. Pavlovic). This property do not satisfy hyperbolic q.c. harmonic
mappings of the unit disk onto itself.

Proposition 1.1 If w = P [f ] is a q.c. harmonic mapping of the unit disk onto a Jordan domain Ω with
rectifiable boundary, then f is an absolutely continuous function.

The proof can be found in [20], [19] or [11]. We will use Proposition 1.1 implicitly in our main Theorems 2.1
and 3.1.

Some of the notations are taken from [8]. Let γ ∈ C1,µ, 0 < µ ≤ 1, be a Jordan curve such that the interior of
γ contains the origin and let g be the arc length parameterization of γ. Then |g′(s)| = 1. Let

K(s, t) = Re [(g(t)− g(s)) · ig′(s)] (1.6)

be a function defined on [0, l]× [0, l]. Denote by K its periodic extension to R2 (K(s+ nl, t+ml) = K(s, t),
m,n ∈ Z).
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Since K(s+ nl, t+ml) = K(s, t), m,n ∈ Z, it follows from [8, Lemma 1.1] that

|K(s, t)| ≤ Cγdγ(g(s), g(t))1+µ, (1.7)

for

Cγ =
1

1 + µ
sup
s6=t

|g′(s)− g′(t)|
(s− t)µ

(1.8)

and dγ is the distance between g(s) and g(t) along the curve γ i.e.

dγ(g(s), g(t)) = min{|s− t|, (l − |s− t|)}. (1.9)

Using (1.7) and following the same lines as in the proof of [8, Lemma 2.7] we obtain the following lemma.
Lemma 1.2 Let w = P [f ](z) be a Lipschitz continuous harmonic function between the unit disk U and a

Jordan domain Ω, such that f is injective, and ∂Ω = f(S1) ∈ C1,µ. Then for almost every eiϕ ∈ S1 one has

lim sup
r→1−0

Jw(reiϕ) ≤ Cγ |f ′(ϕ)|
∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ

x2
dx, (1.10)

where Jw denotes the Jacobian of w at z, and f ′(ϕ) := d
dϕf(eiϕ).

A closed rectifiable Jordan curve γ enjoys a B− chord-arc condition for some constant B > 1 if for all
z1, z2 ∈ γ there holds the inequality

dγ(z1, z2) ≤ B|z1 − z2|. (1.11)

It is clear that if γ ∈ C1,α then γ enjoys a chord-arc condition for some for some Bγ > 1.
We will say that the q.c. mapping f : U→ Ω is normalized if f(1) = w0, f(e2π/3i) = w1 and f(e−2π/3i) =

w2, where w0w1, w1w2 and w2w0 are arcs of γ = ∂Ω having the same length |γ|/3.
The following lemma is a quasiconformal version of [23, Lemma 1]. Moreover, here we give an explicit

Hölder constant Lγ(K).
Lemma 1.3 Assume that γ enjoys a chord-arc condition for some B. Then for every K− q.c. normalized

mapping f between the unit disk U and the Jordan domain Ω = intγ there holds

|f(z1)− f(z2)| ≤ Lγ(K)|z1 − z2|α

for z1, z2 ∈ S1, α = 1
K(1+2B)2 and Lγ(K) = 4(1 + 2B)2α

√
K|Ω|
π log 2 .

P r o o f. For a ∈ C and r > 0, D(a, r) := {z : |z − a| < r}. It is clear that if z0 ∈ S1 := ∂U, then,
because of normalization, f(S1 ∩D(z0, 1)) has common points with at most two of three arcs w0w1, w1w2 and
w2w0. (Here w0, w1, w2 ∈ γ divide γ into three arcs with the same length such that f(1) = w0, f(e2πi/3) = w1,
f(e4πi/3) = w2, and S1 ∩D(z0, 1) do not intersect at least one of three arcs defined by 1, e2πi/3 and e4πi/3).

Let kρ denotes the arc of the circle |z − z0| = ρ < 1 which lies in |z| ≤ 1 and let lρ = |f(kρ)|.
Let γρ := f(S1 ∩D(z0, ρ)) and let |γρ| be its length. Assume w and w′ are the endpoints of γρ i.e. of f(kρ).

Then |γρ| = dγ(w,w′) or |γρ| = |γ| − dγ(w,w′). If the first case hold, then since γ enjoys the B−chord-arc
condition, it follows |γρ| ≤ B|w − w′| ≤ Blρ. Consider now the last case. Let γ′ρ = γ \ γρ. Then γ′ρ contains
one of the arcs w0w1, w1w2 and w2w0. Thus |γρ| ≤ 2|γ′ρ|, and therefore

|γρ| ≤ 2Blρ.

On the other hand, by using (1.1), polar coordinates and the Cauchy-Schwartz inequality, we have

l2ρ = |f(kρ)|2 =

(∫
kρ

|fzdz + fz̄dz̄|

)2

≤

(∫
kρ

|∇f(z0 + ρeiϕ)|ρdϕ

)2

≤
∫
kρ

|∇f(z0 + ρeiϕ)|2ρdϕ ·
∫
kρ

ρdϕ.
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4 Kalaj: Quasiconformal harmonic mappings

Since l(kρ) ≤ 2ρπ/2, for r ≤ 1, denoting ∆r = U ∩D(r, z0), we have

∫ r

0

l2ρ
ρ
dρ ≤

∫ r

0

∫
kρ

|∇f(z0 + ρeiϕ)|2ρdϕdρ

≤ K
∫ r

0

∫
kρ

Jf (z0 + ρeiϕ)ρdϕdρ = πA(r)K,
(1.12)

where A(r) is the area of f(∆r). Using the first part of the proof it follows that, the length of boundary arc γr of
f(∆r) does not exceed 2Blr which, according to the fact ∂f(∆r) = γr ∪ f(kr), implies |∂f(∆r)| ≤ lr + 2Blr.
Therefore by the isoperimetric inequality

A(r) ≤ |∂f(∆r)|2

4π
≤ (lr + 2Blr)2

4π
= l2r

(1 + 2B)2

4π
.

Employing now (1.12) we obtain

F (r) :=
∫ r

0

l2ρ
ρ
dρ ≤ Kl2r

(1 + 2B)2

4
.

Observe that for 0 < r ≤ 1 there hold the relation rF ′(r) = l2r . Thus

F (r) ≤ KrF ′(r) (1 + 2B)2

4
.

It follows that, for

α =
2

K(1 + 2B)2

there holds
d

dr
log(F (r) · r−2α) ≥ 0

i.e. the function F (r) · r−2α is increasing. This yields

F (r) ≤ F (1)r2α ≤ K |Ω|
2π

r2α.

Now there exists for every r ≤ 1 an r1 ∈ [r/
√

2, r] such that

F (r) =
∫ r

0

l2ρ
ρ
dρ ≥

∫ r

r/
√

2

l2ρ
ρ
dρ = l2r1 log

√
2.

Hence

l2r1 ≤ K
|Ω|

π log 2
r2α.

Thus if z is a point of |z| ≤ 1 with |z − z0| = r/
√

2, then

|f(z)− f(z0)| ≤ (1 + 2B)lr ≤ (1 + 2B)lr1 .

Therefore
|f(z)− f(z0)| ≤ H|z − z0|α,

where

H = (1 + 2B)2α
√

K|Ω|
π log 2

.

Thus we have for z1, z2 ∈ S1 the inequality

|f(z1)− f(z2)| ≤ 4H|z1 − z2|α. (1.13)
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Remark 1.4 By applying Lemma 1.3, and by using the Möbius transformations, it follows that, if f is arbi-
trary conformal mapping between the unit disk U and Ω, where Ω satisfies the conditions of Lemma 1.3, then
|f(z1)− f(z2)| ≤ C(f, γ)K|z1 − z2|α on S1.

2 Quantitative bound for Lipschitz constant

The aim of this section is to prove Theorem 2.1. This is a quantitative version of [8, Theorem 2.1]. Notice that,
the proof presented here is direct (it does not depend on Kellogg’s nor on Lindelöf theorem on the theory of
conformal mappings (see [3] for this topic)).

Theorem 2.1 Let w = P [f ](z) be a harmonic normalized K quasiconformal mapping between the unit disk
and the Jordan domain Ω. If γ = ∂Ω ∈ C1,µ, then there exists a constant L = L(γ,K) (which satisfies the
inequality (2.8) below) such that

|f ′(ϕ)| ≤ L for almost every ϕ ∈ [0, 2π], (2.1)

and

|w(z1)− w(z2)| ≤ KL|z1 − z2| for z1, z2 ∈ U. (2.2)

P r o o f. Assume first that w = P [f ] is Lipschitz and thus

ess sup
0≤θ≤2π

|f ′(θ)| <∞.

It follows that

∂w

∂ϕ
(z) = P [f ′](z). (2.3)

Therefore for ε > 0 there exists ϕ such that∣∣∣∣∂w∂ϕ (z)
∣∣∣∣ ≤ ess sup

0≤θ≤2π
|f ′(t)| =: L ≤ |f ′(ϕ)|+ ε. (2.4)

According to (1.4) and (1.10) we obtain:

(1 +
1
K2

)|f ′(ϕ)|2 ≤ π

4
CγK|f ′(ϕ)|

∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ

x2
dx.

If

C2 =
π

4
Cγ

K3

1 +K2

then

L− ε ≤ C2

∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ

x1+µ

dx

x1−µ

≤ C2

∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ−β

x1+µ−β Lβ
dx

x1−µ .

(2.5)

Thus

(L− ε)/Lβ ≤ C2

∫ π

−π

dγ(f(ei(ϕ+x)), f(eiϕ))1+µ−β

x1+µ−β
dx

x1−µ .

Choose β: 0 < β < 1 sufficiently close to 1 so that σ = (α− 1)(1 + µ− β) + µ− 1 > −1. For example

β = 1− µα

2− α
,

Copyright line will be provided by the publisher



6 Kalaj: Quasiconformal harmonic mappings

and consequently
σ =

µα

2− α
− 1.

From Lemma 1.3 and (1.11), letting ε→ 0, we get

L1−β ≤ C2 · (BγLγ)1+µ−β
∫ π

−π
xσdx = C3,

and hence

L ≤ C1/(1−β)
3 = C

2−α
µα

3 . (2.6)

By (2.3) it follows that
|zg′(z)− zh′(z)| ≤ L.

On the other hand,
|∇w| = |g′|+ |h′|

is subharmonic. This follows that

|∇w(z)| ≤ max
|z|=1
{|g′(z)|+ |h′(z)|} ≤ K max

|z|=1
{|g′(z)| − |h′(z)|} = KL. (2.7)

This implies (2.2).
Using the previous case and making the same approach as in the second part of theorem [8, Theorem 2.1] it

follows that w is a Lipschitz mapping. Now applying again the previous case we obtain the desired conclusion.

Remark 2.2 The previous proof yields the following estimate of a Lipschitz constant L for a normalized
K−quasiconformal mapping between the unit disk and a Jordan domain Ω bounded by a Jordan curve γ ∈ C1,µ

satisfying a B−chord-arc condition.

L ≤ 4π
(
π

2
K3

1 +K2
Cγ

2− α
µα

) 2−α
µα

{
4B(1 + 2B)

√
K|Ω|
π log 2

} 2
α

, (2.8)

where
α =

1
K(1 + 2B)2

and Cγ is defined in (1.8). See [20], [19], [4] and [5] for more explicit (more precise) constants, in the special
case where γ is the unit circle.

3 Boundary correspondence under q.c. harmonic mappings

If w = g + h is a harmonic function then

wϕ = i(zg′(z)− zh′(z))

is also harmonic. On the other hand
rwr = zg′(z) + zh′(z).

Hence the function rwr is the harmonic conjugate of wϕ (this means that wϕ + irwr is analytic). The Hilbert
transformation of f ′ is defined by the formula

H(f ′)(ϕ) = − 1
π

∫ π

0+

f ′(ϕ+ t)− f ′(ϕ− t)
2 tan(t/2)

dt

for a.e. ϕ and f ′ ∈ L1(S1). The facts concerning the Hilbert transformation can be found in ([24], Chapter VII).
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There holds

wϕ = P [f ′] and rwr = P [H(f ′)], (3.1)

if wϕ and rwr are bounded harmonic.
The following theorem provides a necessary and a sufficient condition for the harmonic extension of a home-

omorphism from the unit circle to a C2,µ Jordan curve γ to be a q.c mapping, once we know that its image is
Ω = int γ. It is an extension of the corresponding result [8, Theorem 3.1] from convex domains to arbitrarily
smooth domains.

Theorem 3.1 Let f : S1 → γ be an orientation preserving absolutely continuous homeomorphism of the unit
circle onto the Jordan curve γ = ∂Ω ∈ C2,µ. If P [f ](U) = Ω, then w = P [f ] is a quasiconformal mapping if
and only if

0 < l(f) := ess inf l(∇w(eiϕ)), (3.2)

||f ′||∞ := ess sup |f ′(ϕ)| <∞ (3.3)

and

||H(f ′)||∞ := ess sup
ϕ
|H(f ′)(ϕ)| <∞. (3.4)

If f satisfies the conditions (3.2), (3.3) and (3.4), then w = P [f ] is K quasiconformal, where

K :=

√
||f ′||2∞ + ||H(f ′)||2∞ − l(f)2

l(f)
. (3.5)

The constant K is the best possible in the following sense, if w is the identity or it is a mapping close to the
identity, then K = 1 or Kis close to 1 (respectively).

P r o o f. Under the above conditions the harmonic mapping w, by a result of Kneser, is univalent (see for
example [2, p. 31]). Therefore w = g + h, where g and h are analytic and Ju = |g′|2 − |h′|2 > 0. This infers
that the second dilatation µ = h′/g′ is well defined analytic function bounded by 1.

3.1 The proof of necessity

Suppose w = P [f ] = g + h is a K−q.c. harmonic mapping that satisfies the conditions of the theorem. By [10,
Theorem 2.1]) we have

|∂w(z)| − |∂̄w(z)| ≥ C(Ω,K, a)
K

> 0, z ∈ U. (3.6)

By [8, Thoerem 2.1] or Theorem 3.1 we get

|f ′(ϕ)| ≤ La.e. (3.7)

and

lim
r→1
|∂w(reiϕ)| − |∂̄w(reiϕ)| = |∂w(eiϕ)| − |∂̄w(eiϕ)| a.e.. (3.8)

Combining (3.7), (3.8) and (3.6) we get (3.2) and (3.3).
Next we prove (3.4). Observe first that

wr = eiϕwz + e−iϕwz.
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8 Kalaj: Quasiconformal harmonic mappings

Thus

|wr| ≤ |∇w|. (3.9)

By using (3.9) and (2.7) it follows that

|wr(z)| ≤ KL. (3.10)

The last inequality implies that there exist the radial limits of the harmonic conjugate rwr a.e. and

lim
r→1

rwr(reiϕ) = lim
r→1

wr(reiϕ) = H(f ′)(ϕ) a.e, (3.11)

where H(f ′) is the Hilbert transform of f ′. Since rwr is a bounded harmonic function it follows that rwr =
P [H(f ′)], and therefore

||H(f ′)||∞ = ess sup |H(f ′)(ϕ)| <∞.

Thus we obtain (3.4).

3.2 The proof of sufficiency

We have to prove that under the conditions (3.2), (3.3) and (3.4) w is quasiconformal. This means that we need
to prove the function

K(z) =
|wz|+ |wz̄|
|wz| − |wz̄|

=
1 + |µ|
1− |µ|

(3.12)

is bounded.
Since µ = wz̄/wz is an analytic function it follows that |µ| is subharmonic. (Notice that, as φ(t) = 1+t

1−t is
convex this yields that K(z) = φ(|µ(z)|) is subharmonic).

It follows from (1.1) that wϕ is equals the Poisson-Stieltjes integral of f ′:

wϕ(reiϕ) =
1

2π

∫ 2π

0

P (r, ϕ− t)df(t).

Hence, by Fatou’s theorem, the radial limits of fϕ exist almost everywhere and limr→1− fϕ(reiϕ) = f ′0(θ) a.e.,
where f0 is the absolutely continuous part of f .

As rwr is harmonic conjugate of wϕ, it turns out that if f is absolutely continuous, then

lim
r→1−

fr(reiϕ) = H(f ′)(θ) (a.e.),

and

lim
r→1−

fϕ(reiϕ) = f ′(θ).

As

|wz|2 + |wz̄|2 =
1
2

(
|wr|2 +

|fϕ|2

r2

)
it follows that

lim
r→1−

|wz|2 + |wz̄|2 ≤
1
2

(||f ′||2∞ + ||H(f ′)||2∞). (3.13)

To continue we make use of (3.2). From (3.13) and (3.2) we obtain that

ess sup
ϕ∈[0,2π)

|wz(eiϕ)|2 + |wz̄(eiϕ)|2

(|wz(eiϕ)| − |wz̄(eiϕ)|)2
≤ ||f

′||2∞ + ||H(f ′)||2∞
2l(f)2

. (3.14)
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Hence

|wz(eiϕ)|2 + |wz̄(eiϕ)|2 ≤ S(|wz(eiϕ)| − |wz̄(eiϕ)|)2 (a.e.), (3.15)

where

S :=
||f ′||2∞ + ||H(f ′)||2∞

2l(f)2
. (3.16)

According to (3.14), S ≥ 1. Let

µ(eiϕ) :=
∣∣∣∣wz̄(eiϕ)
wz(eiϕ)

∣∣∣∣ .
As w is a diffeomorphism, |µ(eiϕ)| ≤ 1. Then (3.15) can be written as follows:

1 + µ2(eiϕ) ≤ S(1− µ(eiϕ))2,

i.e. µ = µ(eiϕ) satisfies the inequality

µ2(S − 1)− 2µS + S − 1 = (S − 1)(µ− µ1)(µ− µ2) ≥ 0, (3.17)

where

µ1 =
S +
√

2S − 1
S − 1

and

µ2 =
S − 1

S +
√

2S − 1
.

From (3.17) it follows that µ(eiϕ) ≤ µ2 or µ(eiϕ) ≥ µ1. But µ(eiϕ) ≤ 1 and therefore

µ(eiϕ) ≤ S − 1
S +
√

2S − 1
(a.e.). (3.18)

As µ(z) = |a(z)|, where a is an analytic function, it follows that

µ(z) ≤ k := µ2,

for z ∈ U.
This yields that

K(z) ≤ K :=
1 + k

1− k
=

2S − 1 +
√

2S − 1√
2S − 1 + 1

=
√

2S − 1,

i.e.

K(z) ≤
√
||f ′||2∞ + ||H(f ′)||2∞ − l(f)2

l(f)

which means that w is K =
√
||f ′||2∞+||H(f ′)||2∞−l(f)2

l(f) quasiconfomal. The sharpness of the last results follows
from the fact that K = 1 for w being the identity.
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10 Kalaj: Quasiconformal harmonic mappings

3.3 Two examples

The following example shows that, a K (with K arbitrary close to 1) q.c. harmonic selfmapping of the unit disk
exists, having non-smooth extension to the boundary, contrary to the conformal case.

Example 3.2 ([9]). Let

θ(ϕ) = ϕ
1 + b sin(log |ϕ| − π/4)
1 + b sin(log π − π/4)

, ϕ ∈ [−π, π],

where 0 < b <
√

2/2, and let w(z) = P [f ](z) = P [eiθ(ϕ)](z). Then w is a quasiconformal mapping of the unit
disc onto itself such that f ′(ϕ) does not exist for ϕ = 0. Using a similar approach as in Theorem 3.1 it can be
shown that

Kw := sup
|z|<1

|wz|+ |wz̄|
|wz| − |wz̄|

→ 1

as b→ 0 and this means that, there exists a q.c. harmonic mapping close enough to the identity, but its boundary
function is not differentiable at 1. Details we will discus elsewhere.

The next example shows that, the condition (3.2) of the main theorem is important even for harmonic polyno-
mials.

Example 3.3 Let w be the harmonic polynomial defined in the unit disk by:

w(z) = z − 1− (z − 1)2 + z − 1 = 3z − 3− z2 + z̄.

Then w is a univalent harmonic mapping of the unit disk onto the domain bounded by the C∞ convex curve
γ = {(4 cos t − cos(2t) − 3, sin(2t) − 2 sin(t)), t ∈ [0, 2π)}. But wz(1) = wz̄(1) = 1, and therefore w is not
quasiconformal.
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