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Radim na tekstu; very rough version

Proposition 0.1. [16] Let u : Bn → Ω, n ≥ 3 be twice differentiable q.c. map-
ping of the unit ball onto the bounded domain Ω with C2 boundary satisfying the
differential inequality:

|∆u| ≤ A|∇u|2 + B, A,B ≥ 0.

Then ∇u is bounded and u is Lipschitz continuous.

Ovu prop nisam dokazivao;izgleda interesantno;U pristupu u ovom
radu koji se verovatno moze uopstiti lopta ima vaznu ulogu? O kojem
radu mislite?????

1. co-Lipschitz continuity

It is well-known that quasiconformal maps are locally well-behaved with respect
to distance distortion. If f : Ω 7→ Ω′ is a K -quasiconformal mapping between do-
mains Ω, Ω′ ⊂ Rn, then f is locally Hölder continuous with exponent α = K1/(1−n),
i.e.

(1.1) |f(x)− f(y)| ≤ M |x− y|α
whenever x and y lie in a fixed compact set E in Ω. Here M is a constant depending
only on K and E which can in general tend to infinity as the distance, from E to the
boundary of Ω tends to zero. However if the boundary of Ω is enough ”regular”,
then there hold an inequality similar to (1.1) uniformly in Ω (see [10]). The following
lemma in some form is proved in [19]. For the completeness we give its proof here
and show that the constant is sharp.

Lemma 1.1. If u ∈ C1,1 is a K− quasiconformal mapping, defined in a domain
Ω ⊂ Rn (n ≥ 3), then

Ju(x) > 0, x ∈ Ω
providing that K < 2n−1. The constant 2n−1 is sharp.

Proof. Assume converse, i.e. Ju(a) = 0 for some a ∈ Ω. This implies ∇u(a) = 0.
Without loos of generality we can assume that, a = 0 and u(0) = 0. Let r <
dist(0, ∂Ω) and take E = B(0, r). Applying (1.1) to the mapping, f = u−1, defined
in Ω′ = u(Ω), we obtain

(1.2) |f(y)| ≤ ME |y|K
1/(1−n)

, for y ∈ u(E).
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This implies

(1.3) M−K1/(n−1)

E |x|K1/(n−1) ≤ |u(x)|, for x ∈ E.

Now since u is twice differentiable, with ∇u(0) = 0 and u(0) = 0, by Taylor
formula, it follows that there exists a positive constant N such that

(1.4) |u(x)| ≤ N |x|2, x ∈ E.

Combining (1.3) and (1.4) it follows that

(1.5) M−K1/(n−1)

E /N ≤ |x|2−K1/(n−1)
, x ∈ E.

This is only possible providing that

2−K1/(n−1) ≤ 0.

And thus K ≥ 2n−1 which is a contradiction.
To prove the sharpness of the result, take the mapping u(x) = |x|αx, with α ≥ 1.

Then

(1.6) Ju(x) = (1 + α)|x|nα,

and

(1.7) |∇u(x)| = (α + 1)|x|α.

By (1.6) and (1.7) it follows that

|∇u(x)|n
Ju(x)

= (α + 1)n−1.

Therefore u is twice differentiable (1+α)n−1-quasiconformal self-mapping of the
unit ball with Ju(0) = 0. This means that the constant 2n−1 is the best possible. ¤

Lemma 1.2. Let u be a harmonic mapping of the unit ball into itself and let
u(0) = 0. Then there exists a constant Cn such that

(1.8)
1− |x|2

1− |u(x)|2 | ≤ Cn, x ∈ Bn.

Proof. Let S+ denotes the northern hemisphere and let S− denotes the southern
hemisphere. Let U = P [χS+ ] − P [χS− ] be the poisson integral of a function that
equals 1 on S+ and −1 on S−. Then by Schwartz lemma ([1]), for fixed x0 there
holds the inequality

〈
u(x),

u(x0)
|u(x0)|

〉
≤ |U(|x|N)|,

where N is the north pole.
It follows that

|u(x0)|2 ≤ |U(|x0|N)|2.
Thus

1− |x|2
1− |u(x)|2 ≤

1− |x|2
1− U(|x|N)2

=: g(r), r = |x|.
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Now we need the following lemma

Lemma 1.3 (Hopf’s Boundary Point lemma). [18] and [5]. Let v satisfies ∆v ≥ 0
in D and v ≤ M in D, v(P ) = M for some P ∈ ∂D. Assume that P lies on
the boundary of a ball B ⊂ D. If v is continuous on D ∪ P and if the outward
directional derivative ∂v

∂n exists at P , then v ≡ M or

∂v

∂n
> 0.

Let apply this lemma to the function U(x) and take h(r) = U(rN). We obtain

h′(1) =
∂U(N)

∂n
> 0.

Thus

Cn := sup
|x|≤1

{
1− |x|2

1− U(|x|N)2

}
< ∞.

The results follows.
¤

Lemma 1.4. If p is a Möbius transformation of the unit ball onto itself, then for
every k, l ∈ N there exist constants Ck,l such that

(1.9)
k!|a|k−1(1− |a|2)

[x, a]k+1
≤ |p(k)(x)| ≤ Ck,0|a|k−1(1− |a|2)

[x, a]k+1
, x ∈ Bn, p(0) = a.

(1.10)
|p(k)(x)|
|p(l)(x)| ≤ Ck,l

1
(1− |x|)k−l

x ∈ Bn.

and

(1.11) |p(k)(x)| ≤ Ck,0

(1− |p(0)|2)(k−1)/2

(
1− |p(x)|2
1− |x|2

)(k+1)/2

x ∈ Bn.

Proof. Since

|∇p| = 1− |a|2
[x, a]2

,

using the fact that

|∇|∇p|| ≤ |∇∇p|,
it follows that

2|a|(1− |a|2)
[x, a]3

≤ |∇∇p|.
The rest of the proof of left-hand side of (1.9) follows by induction.

Some of the formula which we use here are taken form the excellent book of
Ahlfors [2]. From

[x, a]2 = |x|2|x∗ − a|2 = |a|2|x− a∗|2
= ||x|a− |x|x∗|2 = ||a|x− |a|a∗|2 = ||x|a− |x|x∗| · ||a|x− |a|a∗|,

it follows that
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[x, a]2 ≥ (1− |a|)(1− |x|).
Assume that p is not an identity and let p(0) = −a or p(a) = 0. Then

p(x) =
(1− |a|2)(x− a)− |x− a|2a

[x, a]2
,

and

P ′(x) =
1− |a|2
[x, a]2

∆(x, a),

where

∆(x, a) = (I − 2Q(a))(I − 2Q(x− a∗)),

and Q(y) is the matrix which components have the form

Q(y)i,j =
yiyj

|y|2 .

For every y there holds K(y) := I − 2Q(y) ∈ On (is an orthogonal matrix). Thus
∆(x, a) is an orthogonal matrix as well and consequently

|∆(x, a)| = 1.

This means that

|p′(x)| = 1− |a|2
[x, a]

.

Thus

(1.12) |p′(x)| ≤ 2
1− |x| .

If we put

A =
1− |a|2
[x, a]2

and
B = (I − 2Q(a))(I − 2Q(x− a∗)),

then we have that
p′ = AB,

and consequently for k + 1− derivative of p we have

(1.13) p(k+1)(x) =
k∑

j=1

(
k

j

)
A(j)B(k−j),

treated as a k linear form between Rn × · · · × Rn and Mn×n.
We will use the following notation

Q(y) =
y ⊗ y

|y|2 ,

where ⊗ denotes the tensor product of vectors.
Differentiating we obtain
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Q′(y)h1 =
h1 ⊗ y + y ⊗ h1

|y|2 − 2
〈h1, y〉 y ⊗ y

|y|4

=
|y|2(h1 ⊗ y + y ⊗ h1)− 2 〈h1, y〉 y ⊗ y

|y|4

=
P 1(y, y, y, h1)

|y|4 .

(1.14)

Let us prove that, for k ∈ N, there exists a 2k + 2 linear form

P k : Rn × · · · × Rn 7→ Mn×n

such that

(1.15) Q(k)(y)(h1, h2, . . . hk) =
1

|y|2k+2
P k(y, . . . , y, h1, . . . , hk).

To prove this, we use the induction.
It is evident that, according to (1.14), this is true for k = 1 .
Assume that (1.15) is true for k and prove it for k + 1. By (1.15) it follows that

Q(k+1)(y)(h1,h2, . . . hk, hk+1)

=
1

|y|2k+2

k+2∑

j=1

P k(y, . . . , y
j↓

hk+1, y . . . , y, h1, . . . , hk)

− (k + 1)
〈y, hk+1〉
|y|2k+4

P k(y, . . . , y, h1, . . . , hk),

(1.16)

where
j↓

hk+1 denotes that hk+1 is in jth position.
Thus

(1.17) Q(k+1)(y)(h1, h2, . . . hk, hk+1) =
P k+1(y, . . . , y, h1, . . . , hk, hk+1)

|y|2(k+1)+2
,

where

P k+1(e1, . . . , ek+3, f1, . . . fk+1)

=
k+1∑

j=1

< ek+3, ej > P k(e1, . . . ,
j↓

fk+1, . . . , ek+2, f1, . . . , fk)

− (k + 1) < ek+3, fk+2 > P k(e1, . . . , ek+2, f1, . . . , fk).

Since P k is an 2k + 2 linear form, it follows that

(1.18) |P k(y, . . . , y, h1, . . . , hk)| ≤ |P k||y|k+2
k∏

j=1

|hj |.

Thus

(1.19) |Qk(y)| ≤ |P k|
|y|k ,

or what is the same
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(1.20) |Qk(x− a∗)| ≤ |P k|
|x− a∗|k =

|a|k|P k|
[x, a]k

.

To continue, observe that

B(x) = K(a)(I − 2Q(x− a∗)), K(a) ∈ On.

Thus
B(k)(x) = −2K(a)Q(k)(x− a∗),

and using the identity

1− |p(x)|2
1− |x|2 =

1− |a|2
[x, a]2

=
1− |a|2

|a|2|x− a∗|2 ,

we obtain

(1.21) |Bk(x)| ≤ |a|k|P k|
[x, a]k

<
2|a|k|P k|(1− |p|2)k/2

(1− |a|2)k/2(1− |x|2)k/2
.

In order to estimate the derivatives of A(x) = 1−|a|2
[x,a]2 , define

H(y) =
1
|y|2 =

|a|2
1− |a|2 A(x), y = x− a∗.

Similarly as above it can be proved that, for every k ≥ 1 there exists a 2k linear
form

Gk(x) : Rn × · · · × Rn 7→ R
such that

(1.22) H(k)(y)(h1, h2, . . . hk) =
1

|y|2k+2
Gk(y, . . . , y, h1, . . . , hk).

Therefore

(1.23) |Hk(y)| ≤ |Gk|
|y|k+2

,

and having in mind
1− |p(x)|2
1− |x|2 =

1− |a|2
[x, a]2

,

it follows

|Ak(x)| ≤ (1− |a|2)|Gk|
|a|2|x− a∗|k+2

=
|a|k(1− |a|2)|Gk|

[x, a]k+2

≤ 2|a|k|Gk|(1− |p|2)1+k/2

(1− |a|2)(k−1)/2(1− |x|2)1+k/2
.

(1.24)

Combining (1.13), (1.21) and (1.24) we obtain for k ≥ 1:

(1.25) |p(k+1)(x)| ≤ Ck+1
1

[x, a]k+1
,

and

(1.26) |p(k+1)(x)| ≤ Ck+1
1

(1− |x|)k+1
,
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where

Ck+1 = 2
k∑

j=1

(
k

j

)
|P j ||G(k−j)|.

This completes the proof. ¤

Remark 1.5. In the plane case the sharp constant in (1.26) is Ck = 2k!. The
question arises, is this the best constant for arbitrary n? Notice that in (1.12) is
showed that this is the case for k = 1.

Theorem 1.6. If u is a q.c. harmonic mapping of the unit ball onto itself with
K < 2n−1 then

Ju(x) ≥ cK > 0 for x ∈ Bn.

Proof. We will use similar approach as in [19]. We will prove that the function |∇u|
is uniformly bounded below away from 0 by contradiction. Suppose not, then there
exists a sequence of points xi ∈ Bn, such that ∇u(xi) → 0 as i →∞. To finish the
proof we prove the following lemma:

Lemma 1.7. Let u be a harmonic Lipschitz mapping of the unit ball into itself.
Let xi be a sequence of points. Let pi and qi be two Möbius transformations of Bn

such that qi(0) = xi and pi(u(xi)) = 0. Take ui = pi ◦ u ◦ qi. Then

(1.27) |D(k)ui(x)| ≤ Ck
n

1
(1− |x|2)k

, k ∈ N,

where Ck
n is independent on x and i.

Proof. In order to simplify calculations, sometimes along this proof, we will avoid
the arguments of functions.

Using

(1.28) |∇pi(u)| = 1− |pi(u)|2
1− |u|2 ,

and

(1.29) |∇qi(x)| = 1− |qi(x)|2
1− |x|2

it follows that
|∇ui| ≤ |∇pi||∇u||∇qi|

≤ 1− |pi(u(qi(x)))|2
1− |u(qi(x))|2

1− |qi(x)|2
1− |x|2 |∇u|

≤ Cn|∇u|∞ 1− |pi(u(qi(x)))|2
1− |x|2 .

(1.30)

Thus

(1.31) |∇ui| ≤ Cn|∇u|∞ 1
1− |x|2 .

For m ∈ N, we make use of the Cauchy inequalities:

(1.32) |Dm(u)(qi(x))| ≤ An
|∇u|∞

(1− |qi(x)|)m−1
.
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To establish the behaviors of Dkui, k > 1, we use induction. It is evident that,
Dkui is complicate to compute for large k, however it is clare that it can be written
as the following sum:

(1.33) Dkui =
∑ (

p
(τ)
i

n∏
t=1

Djtuq
(st1)
i · · · · · q(stlt )

i

)
,

where
∏

denotes corresponding product of linear operators. Here the index τ
ranges from 1 to k, and the other indexes jt,st1, . . . , stlt satisfy similar bounds.

Since

|p(τ)
i |

n∏
t=1

|Djtu||q(st1)
i |·· · ··|q(stlt )

i )| ≤ C|p(τ)
i |

n∏
t=1

|∇u|∞
(1− |qi(x)|)jt−1

|q(st1)
i |·· · ··|q(stlt )

i )|

It is enough to prove that

(1.34) |p(τ)
i |

n∏
t=1

|∇u|∞
(1− |qi(x)|)jt−1

|q(st1)
i | · · · · · |q(stlt )

i )| ≤ C
1

(1− |x|)k
.

For k = 1, (1.34) is true. Assume that (1.34) is true for k an therefore (1.33) is
true as well. In what follows we are going to prove (1.34) for k + 1.

Since Dk+1ui = DDkui, it follows that, a corresponding formula (1.33) for
Dk+1ui instead of

p
(τ)
i Djtuq

(st1)
i · · · · · q(stlt )

i

contains

(
p
(τ+1)
i Duq′iD

jtuq
(st1)
i · · · · · q(stlt )

i ) + p
(τ)
i Djt+1uq′i · q(st1)

i · · · · · q(stlt )
i +

p
(τ)
i Djtuq

(st1+1)
i · · · · · q(stlt )

i ) + · · ·+ p
(τ)
i Djtuq

(st1)
i · · · · · q(stlt+1)

i )
)

,

and consequently the corresponding formula (1.34), instead of

|p(τ)
i | |∇u|∞

(1− |qi(x)|)jt−1
|q(st1)

i | · · · · · |q(stlt )
i |

contains

(
|p(τ+1)

i |Du||q′i||Djtu||q(st1)
i | · · · |q(stlt )

i )|+ |p(τ)
i | |∇u|∞

(1− |qi(x)|)jt
|q′i| · |q(st1)

i | · · · |q(stlt )
i |

+|p(τ)
i | |∇u|∞

(1− |qi(x)|)jt−1
||q(st1+1)

i | . . . |q(stlt )
i |) + . . .

+|p(τ)
i | |∇u|∞

(1− |qi(x)|)jt−1
|q(st1)

i | · · · |q(stlt+1)
i )|

)
.

Applying now (1.29), we get

|∇u|∞
(1− |qi(x)|)jt

|q′i| =
|∇u|∞

(1− |qi(x)|)jt

1− |qi(x)|2
1− |x|2

≤ |∇u|∞
(1− |qi(x)|)jt−1

2
1− |x| .

(1.35)
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Next, by applying (1.8) and (1.10) we obtain

(1.36) |p(τ+1)
i Duq′i|/|p(τ)

i | ≤ C|p(τ)
i |

1− |u(qi(x))|
1− |qi(x)|

1− |x| ≤ C
|p(τ)

i |
1− |x| .

On the other hand, according to (1.10) we have

(1.37) |q(j+1)
i | ≤ C

|q(j)
i |

1− |x| .

By induction, (1.34) is true for k. The last fact and equation (1.35), (1.36) and
(1.37) imply that (1.34) is true for k + 1. Consequently

(1.38) |D(k)ui(x)| ≤ Ck
n

1
(1− |x|2)k

, k ∈ N

¤

Taking the notations of the previous lemma, ui = pi◦u◦qi is a C∞ K−quasiconformal
mapping of the unit ball onto itself satisfying the condition ui(0) = 0 and

(1.39) |∇ui(0)| = 1− |xi|2
1− |u(xi)|2 |∇u(xi)| → 0

as i → ∞. By [6] for example, a subsequence of ui, also denoted by ui, converges
uniformly to a K-quasiconformal map u on the close unit ball Bn. According to
this lemma, u is in C∞(Bn;Bn) with u(0) = 0 and from (1.39) ∇(u)(0) = 0.
This obviously contradicts the statement of Lemma 1.1. Hence the proof of the
proposition is completed.

¤

Remark 1.8. Using the formula

(1.40) |∇qi(x)| = 1− |xi|2
|xi||x + x∗i |

,

First of all we have

1− |pi(u(qi(x)))|2 =
(1− |u(xi)|2)(1− |u(qi(x))|2)
|u(xi)|2|u(qi(x))− u(xi)

∗|2 ,(1.41)

Next there holds

(1.42) 1− |u(qi(x))|2 ≤ |∇u|∞ 1 + |u(qi(x))|
1 + |qi(x)| (1− |qi(x)|2) ≤ 2|∇u|∞(1− |qi(x)|2),

(1.43) (1− |qi(x)|2) = |∇qi|(1− |x|2),
and

(1.44) |u(xi)|2|u(qi(x))− u(xi)
∗|2 ≥ (1− |u(xi)|)2.

Using one more again (1.8) and combining (1.41), (1.42), (1.43) and (1.40) it
follows that
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(1.45)
1− |pi(u(qi(x)))|2

1− |x|2 ≤ 2|∇u|∞ (1 + |u(xi)|)2
|xi||x− x∗i |

1− |xi|2
1− |u(xi)|2 ≤

8Cn|∇u|∞
|xi||x + x∗i |

.

Assume that limi→∞ xi = t. Combining (1.30) and (1.45) we obtain that for
x ∈ Bn \ {x : |x + t| ≤ ε}.

|∇ui| ≤ 16
ε

C2
n|∇u|2∞, i ≥ i0.

It follows that un is locally uniformly Lipschitz family of q.c. mappings with
locally bounded derivative.

Theorem 1.9. Let K < 2n−1 and assume that u is a K−q.c. harmonic mapping
the unit ball onto itself. Then it is a bi-Lipschitz mapping.

Proof. First of all

1/c < |∇u| ≤ c,

then using the fact u is quasi-conformal, it follows that

1/c1 < |∇(u−1)| ≤ c1

and this implies that u is bi-Lipschitz.
¤

In what follows is given an non-trivial example of q.c. harmonic selfmapping of
the unit ball.

Example 1.10. Let Iε(x) = (x1 + ε, x2, x3) then

|Iε(x)| = (1 + 2εx1 + ε2)1/2.

Define

φε(x) = Iε(x)/|Iε(x)| = (1 + 2εx1 + ε2)−1/2(x1 + ε, x2, x3)

and take Φε = P [φε]. Then for small enough ε Φε is a diffeomorphism of the unit
ball onto itself having a diffeomorphic extension to the boundary. This for example
means that Φε is q.c.

It is enough to prove that Φε is injective in B3 for small ε. In order to do this
we use the following result due to Gilbarg and Hörmander see [7, Theorem 6.1 and
Lemma 2.1],

Proposition 1.11. The Dirichlet problem ∆u = f in Ω, u = u0 on ∂Ω ∈ C1 has
a unique solution u ∈ C1,α, for every f ∈ C0,α, and u0 ∈ C1,α, and we have

(1.46) ||u||1,α ≤ C(||u0||1,α,∂Ω + ||f ||0,α)

where C is a constant.
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Direct calculations yield

|∇Φε(x)− Id| = |∇P [φε − Id](x)|

≤ C sup
|x|=1

{(
3∑

i=1

|∂xi(∇φε(x)− Id)|2)1/2 + (
3∑

i=1,j=1

|∂xi,xj (∇φε(x)− Id)|2)1/2}

= C × sup
|x|=1

{((
−1 +

εx1 + 1
(1 + ε2 + 2εx1)3/2

)2

+ 2
(
−1 +

1√
1 + ε2 + 2εx1

)2

+
ε2x2

2

(1 + ε2 + 2εx1)3
− εx3

(1 + ε2 + 2εx1)3/2

)1/2

+
(

2(−1 +
1√

1 + a2 + 2ax1

)2

+ (−1− a(a + x1)

1 + a2 + 2ax1
3/2

+
1√

1 + a2 + 2ax1

)2

+
a2x2

2

(1 + a2 + 2ax1)3
+

a2x2
3

(1 + a2 + 2ax1)3

)1/2
}

.

Therefore
lim
ε→0

|∇Φε(x)− Id| = 0

uniformly on Bn.
It follows that there exist ε > 0 such that

sup
|x|≤1

|∇Φε(x)− Id| < 1/2.

From
|Φε(x)− Φε(y) + y − x| ≤ 1/2|x− y|,

we obtain

1/2|x− y| ≤ |Φε(x)− Φε(y)|.
This implies that, Φε is injective.

Remark 1.12. It seems that, the previous example can be modified to the class
of all bi-Lipschitz harmonic diffeomorphism of the unit ball onto itself. Thus small
perturbations of the boundary value of harmonic q.c. transformation φ ∈ C2(Bn),
of the unit ball onto itself induce harmonic q.c. mappings.
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[8] D. Gilbarg, N. Trudinger: Elliptic Partial Differential Equations of Second Order, Vol. 224, 2
Edition, Springer 1977, 1983.

[9] J. Heinonen: Lectures on Lipschitz Analysis, Lectures at the 14th Jyvskyl Summer School in
August 2004.

[10] Koskela, P.; Onninen, J.; Tyson, J. Quasihyperbolic boundary conditions and capacity: Hölder
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