HARMONIC Q.C. SELF-MAPPING AND MOBIUS
TRANSFORMATIONS OF THE UNIT BALL B"

DAVID KALAJ AND MIODRAG MATELJEVIC

Radim na tekstu; very rough version

Proposition 0.1. [16] Let u : B® — Q, n > 3 be twice differentiable q.c. map-
ping of the unit ball onto the bounded domain Q with C? boundary satisfying the
differential inequality:

|Au| < A|Vul*+ B, A,B > 0.
Then Vu is bounded and w is Lipschitz continuous.

Ovu prop nisam dokazivaosizgleda interesantno;U pristupu u ovom
radu koji se verovatno moze uopstiti lopta ima vaznu ulogu? O kojem

1. CcO-LIPSCHITZ CONTINUITY

It is well-known that quasiconformal maps are locally well-behaved with respect
to distance distortion. If f : Q — €’ is a K -quasiconformal mapping between do-
mains 2, C R”, then f is locally Holder continuous with exponent ov = K'1/(1=7)
ie.

(L.1) [f(@) = fy)| < Mz —y[*

whenever x and y lie in a fixed compact set E in ). Here M is a constant depending
only on K and E which can in general tend to infinity as the distance, from E to the
boundary of €2 tends to zero. However if the boundary of 2 is enough "regular”,
then there hold an inequality similar to (1.1) uniformly in  (see [10]). The following
lemma in some form is proved in [19]. For the completeness we give its proof here
and show that the constant is sharp.

Lemma 1.1. If u € CY! is a K— quasiconformal mapping, defined in a domain
QCR™ (n>3), then

Ju(z) > 0,2 € Q
providing that K < 2"~1. The constant 2"~ is sharp.

Proof. Assume converse, i.e. Jy(a) = 0 for some a € Q. This implies Vu(a) = 0.
Without loos of generality we can assume that, « = 0 and w(0) = 0. Let r <
dist(0,09Q) and take E = B(0,r). Applying (1.1) to the mapping, f = u~!, defined
in Q' = (), we obtain

(1.2) 1 (y)] < Mply[<"" " for y € u(E).

2000 Mathematics Subject Classification. Primary 30C65; Secondary 31B05.
Key words and phrases. Quasiconformal maps, PDE, Lipschitz condition.

1



2 DAVID KALAJ AND MIODRAG MATELJEVIC

This implies

(1.3) ML?KU(TL_UMKI/(WU <|u(z)|,for x € E.

Now since u is twice differentiable, with Vu(0) = 0 and «(0) = 0, by Taylor
formula, it follows that there exists a positive constant N such that

(1.4) lu(x)| < N|z|*,x € E.
Combining (1.3) and (1.4) it follows that

(1.5) MK N < 2K s e B
This is only possible providing that
2 - KY0=1 <.

And thus K > 2" 1 which is a contradiction.
To prove the sharpness of the result, take the mapping u(z) = |z|“z, with o > 1.
Then

(1.6) Ju(@) = (1 + a)fz["?,
and
(1.7) [Vu(z)| = (o + 1)|z|*.
By (1.6) and (1.7) it follows that
Vul@l e
To@) (a4+1)" .

Therefore u is twice differentiable (14 a)"~!-quasiconformal self-mapping of the
unit ball with J,,(0) = 0. This means that the constant 2"~ ! is the best possible. [

Lemma 1.2. Let u be a harmonic mapping of the unit ball into itself and let
u(0) = 0. Then there exists a constant Cy, such that

1— |z
1— |u(z)[?
Proof. Let ST denotes the northern hemisphere and let S~ denotes the southern
hemisphere. Let U = P[xg+] — P[xs-] be the poisson integral of a function that

equals 1 on St and —1 on S~. Then by Schwartz lemma ([1]), for fixed z there
holds the inequality

(1.8) | < Cph,xz € B".

(ute), 2L <0 (al).

lu(zo)|
where N is the north pole.
It follows that

[u(z0)|* < U (|| N)J*.

Thus
1—|xf? 1—|z|?

1—Ju(z)]2 — 1-U(]z|N

7 =), r=lal
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Now we need the following lemma

Lemma 1.3 (Hopf’s Boundary Point lemma). [18] and [5]. Let v satisfies Av > 0
in D and v < M in D, v(P) = M for some P € 0D. Assume that P lies on

the boundary of a ball B C D. If v is continuous on D U P and if the outward

directional derivative 22 exists at P, then v =M or

on
ov
— > 0.
on >

Let apply this lemma to the function U(z) and take h(r) = U(rN). We obtain
OU(N)

K1) = .
(1) 5 >V

Thus

The results follows.
O

Lemma 1.4. If p is a Mébius transformation of the unit ball onto itself, then for
every k,l € N there exist constants Cy; such that

kla*1(1 — |af?)

Crolal*'(1 = |a[*) n
(1.9) Tl < Ip®(z)| < O[del , z € B", p(0) =a.
p™ ()] 1
1.10 — = <O B™.
(110 p0(@)] = T a7 €
and
(k+1)/2
Cr.0 1 — |p(z)]?
1.11 &) ()| < ’ B™.
1 )< e (T v
Proof. Since
1 —|af?
v p—
[Vl Tl
using the fact that
VIVl < [VVp],
it follows that
2lal(1 — |al?
[z, al?

The rest of the proof of left-hand side of (1.9) follows by induction.
Some of the formula which we use here are taken form the excellent book of
Ahlfors [2]. From

[z,a]* = |a|*|z* — af* = |a]?|z — a*?

= llzla — [ala"* = |lalz — |ala*]* = [|z]a — |z]2"|

|lalz —[ala”],

it follows that
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[z,a]* > (1~ la])(1 — |z]).
Assume that p is not an identity and let p(0) = —a or p(a) = 0. Then

(1—la?)(z—a)— |z —al’a

and )
/ . 1- |a|
P (l’) - [x’a]g A(x,a),
where

Alw,a) = (I - 2Q(a)(I - 2Q(x — a)),
and Q(y) is the matrix which components have the form
YiY;j
Q)i = .
Wi =y
For every y there holds K(y) := I —2Q(y) € O,, (is an orthogonal matrix). Thus
A(x,a) is an orthogonal matrix as well and consequently

|A(z,a)| = 1.
This means that
1—al?
/ _
|p ($)|— [1,7&} .
Thus
2
1.12 / <
(112) Pl < T
If we put
4 L=laP
[z, a]?
and

then we have that
p' = AB,

and consequently for k 4+ 1— derivative of p we have

k
k ) )
(1.13) pF D () = ( ) AG) glk=i)

treated as a k linear form between R™ x --- x R™ and M,,xn.
We will use the following notation

_Yy®y
Qy) PR

where ® denotes the tensor product of vectors.
Differentiating we obtain
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h@y+y®h _(hi,y)yQy

@ = ly[? ST
(1.14) _Pheytyeh) —2(h,y)y@y
ly*
_ Pl'(y,y,y, M)
ly|*

Let us prove that, for k € N, there exists a 2k + 2 linear form
PFIR? x oo x R" = M, un
such that

1
(1.15) QW (y)(hy, ha, .. hi) = W—MP%, oy ).

To prove this, we use the induction.
It is evident that, according to (1.14), this is true for k =1 .
Assume that (1.15) is true for k& and prove it for k£ + 1. By (1.15) it follows that

Q(k+1)(y)(h1’h2’ e h’k? hk+1)
k+2

1 Jl
(116) :szk(yw”ayhk+17y"'7y7h17"'7hk)
j=1

Yy, h
_(k+1)<|y2]’::::i>Pk(ya"'7yah1a"'7h’k)7

Jl
where hi1 denotes that hyyp is in jth position.

Thus
Pk+1(y7 s 7y7h17 R hk:ah/k:-‘rl)
(1.17) QU (y)(ha, ha, .. by ) = |y[2+D+2 ’
where
PkJrl(ela cee 7ek+3af17 s fk-‘rl)
k1 il
:Z < ek+37ej >Pk(elv"'7fk+17"'7€k+23f17"'3fk)
j=1

— (k+1) < ertss frrz > PF(er, .oy ergas fis ooy fr)-

Since P* is an 2k + 2 linear form, it follows that

k
(1.18) PRy B, )| < 1 PH 2 T sl
j=1
Thus
Pk
(1.19) Q5 () < 'W'

or what is the same
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[PH_ Jal*[PY|

(1.20) 1Q%(z — a*)| < —.

2 —a*[F " [z,d]
To continue, observe that
B(z) = K(a)(I —2Q(z —a")), K(a) € O,.
Thus
B®(2) = —2K(a)Q) (z — a*),
and using the identity

1—|p(@)]® _1—la> _ 1-—|af?
1— |x|2 - [z,a]2 - \a|2|a:—a*|2’
we obtain
k| pk oalk | P*I(1 — |p|2)k/2
(1.21) |B*(2)| < |al*[P”] < |a|"[P*|(1 — |p|*)

[z, a]* (1 — [a]2)k/2(1 — |z[2)k/2"

2
In order to estimate the derivatives of A(x) = %, define

1 lal?
Y) =175 = Az), y=x—d".
> 1—laf
Similarly as above it can be proved that, for every k > 1 there exists a 2k linear
form

GF(z) :R" x --- xR" —» R

such that
1
(1.22) H® (y)(hy, ha, ... hy) = WGk(y,...,y,hl,...,hk).
Therefore
|G¥|
(1.23) |H"(y)| < TyFre

and having in mind
1—|p(@)]* _1-—laf?

L—|z[2  [w,a?”’
it follows
AR ()] < (1 —aP)IG*] _ la|*(1 - |a]?)|G*|
20 S TPl -2 T R

2fal*|G¥(1 - Ipf) /2
= (= [aP) (1 — o)

Combining (1.13), (1.21) and (1.24) we obtain for k > 1:

(k+1) -
and
1
(1.26) p* 0 ()] < Crpa

(1 — |+t
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where

i =2 (’;’) PG|
=1

This completes the proof. O

o~

Remark 1.5. In the plane case the sharp constant in (1.26) is Cx = 2k!. The
question arises, is this the best constant for arbitrary n? Notice that in (1.12) is
showed that this is the case for k = 1.

Theorem 1.6. If u is a g.c. harmonic mapping of the unit ball onto itself with
K < 2" ! then
Ju(x) > cx >0 forxz e B".

Proof. We will use similar approach as in [19]. We will prove that the function |Vu|
is uniformly bounded below away from 0 by contradiction. Suppose not, then there
exists a sequence of points x; € B", such that Vu(x;) — 0 as i — oo. To finish the
proof we prove the following lemma:

Lemma 1.7. Let u be a harmonic Lipschitz mapping of the unit ball into itself.
Let z; be a sequence of points. Let p; and q; be two Mdébius transformations of B™
such that ¢;(0) = z; and p;(u(x;)) = 0. Take u; = p;ouoq;. Then

(1.27) |DWy(z)] < CF keN,

1
(1 —[az]?)*”
where C¥ is independent on x and i.

Proof. In order to simplify calculations, sometimes along this proof, we will avoid
the arguments of functions.

Using
1 — |pi(u)]?
1.2 i = 5
and
1= e
(1.29) IVai(x)| = 1- |22
it follows that
V| < [Vpil[Vul| Vil
1 — |pi(u(gi(x)))* 1 — |gs()[?
<
(1.30) S T lw@)E -
1 — |pi(u(gi(z)))?
< Gl LT
Thus
1
1.31 i < — -
(1.31) [Vu,| < C’n|Vu\ool TP

For m € N, we make use of the Cauchy inequalities:

[Vt]so

(1.32) [ D™ (u)(qi(2))| < A"W'
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To establish the behaviors of D*u;, k > 1, we use induction. It is evident that,
DFu,; is complicate to compute for large k, however it is clare that it can be written
as the following sum:

(1.33) DFu; = <p§T> Hpjtuqftl) ..... qutlJ) 7

t=1

where [] denotes corresponding product of linear operators. Here the index T

ranges from 1 to k, and the other indexes j;,S¢1, ..., Sy, satisfy similar bounds.
Since
O TT 1 e (5e0) (su) ™) - Vulso (s61) (st1,)
o | [T D7 ullgs™ )+ lg;™" )| < Clp; H—jt,l\qi [ lgg ™)
t=1 t:l

It is enough to prove that

Vu| (s11,) 1
134 () | 00 (). (su)y) < ¢ .
a3 b |H Gl o) < i

For k =1, (1.34) is true. Assume that (1.34) is true for k an therefore (1.33) is
true as well. In what follows we are going to prove (1.34) for k + 1.

Since D¥*lu; = DDP*u;, it follows that, a corresponding formula (1.33) for
DF+1y, instead of

pl(.T)DjfquS“) cee .ql(sﬁt)
contains
(pETH)DUQQDjtuqz(S“) coegly D Dty gr gl gl
o Diugl® ) e O)) ) Diglte) . gfoten)))
and consequently the corresponding formula (1.34), instead of
T |VU|OO St1 (st ¢
Ip{™| g gt

(1 —|g@)phe1"

contains

| u|oo (St1)|

T JgaCaye 1

Sflt ‘

T+1) j St Stly T
(|p< D Dufl gD ullg™ - g + 7] o

() |Vl (se141) (s12,)
e s RN el R
() ‘Vu|<>0 (s¢1) (st14+1) )
+pi — |4, q; .
| |(17|ql_(x)|)h 7l |- )l

Applying now (1.29), we get

Vil 1 la(o)P
(1 —lgi(@)[)7* 1— |z
[V|oo 2
T (1= gi(@) ) 1~ [z

Vu
Moo o
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Next, by applying (1.8) and (1.10) we obtain

O’ 1-la@)] _ 7]
u(gs(@))] 1—lfz| = 1|z
On the other hand, according to (1.10) we have

(136) P Dugll/ 7] < 1=

7

@)
(j+1) lgi”"|
1.37 , <C——-.
(137 ) < o4t
By induction, (1.34) is true for k. The last fact and equation (1.35), (1.36) and
(1.37) imply that (1.34) is true for k 4+ 1. Consequently

1
(k) . < ki
(1.38) Do) < O gy BEN
]

Taking the notations of the previous lemma, u; = p;ouog; is a C*° K —quasiconformal
mapping of the unit ball onto itself satisfying the condition u;(0) = 0 and

1-— ‘$1‘2
1= fu(z)[?
as i — oo. By [6] for example, a subsequence of u;, also denoted by w;, converges
uniformly to a K-quasiconformal map u on the close unit ball B™. According to
this lemma, w is in C*°(B™; B™) with u(0) = 0 and from (1.39) V(u)(0) = 0.
This obviously contradicts the statement of Lemma 1.1. Hence the proof of the
proposition is completed.

(1.39) |[Vu;(0)] = |[Vu(z;)| — 0

d
Remark 1.8. Using the formula
1— |ai|?
1.40 Vg =
(1.40) Vaia)| = et o

First of all we have

(1 — Ju(z:) ) (A = Julgi(@)*)

(1.41) 1— |pz(u((h($)))|2 = lu(z:) 2 u(gi(z)) — u(z) ]2

Next there holds

1+ u(gi(z))|

(1.42) 1 —Ju(q: (@) < [Vulo (1= lai(@)*) < 2[Vuloo (1 = lgi(2)?),

1+ gi(z)|
(1.43) (1= lgi(@)]*) = [Val(1 - |z*),
and
(1.44) (i) [Plulgi(z)) — u(@:)"|* > (1 = Ju(z)])?.

Using one more again (1.8) and combining (1.41), (1.42), (1.43) and (1.40) it
follows that
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(1 + Ju(x;)])® 1 —|a]? < 8C, | V|

il — 27| 1= |u(@:)® ~ |zille + 23]

2
1= ol < 2|V oo

Assume that lim; .., x; = t. Combining (1.30) and (1.45) we obtain that for
ze€B"\{z:|z+tl <e}.

16
[Vu;| < ?C’%|Vu|go,i > 1p.

It follows that w, is locally uniformly Lipschitz family of q.c. mappings with
locally bounded derivative.

Theorem 1.9. Let K < 2"~ ! and assume that u is a K—q.c. harmonic mapping
the unit ball onto itself. Then it is a bi-Lipschitz mapping.

Proof. First of all
1/e < |Vu| <e,

then using the fact u is quasi-conformal, it follows that

e < |Vu ™ <
and this implies that u is bi-Lipschitz.
O

In what follows is given an non-trivial example of q.c. harmonic selfmapping of
the unit ball.

Example 1.10. Let I.(z) = (1 + €, 22, 23) then
|I(x)| = (1 + 2ez1 +£3)Y/2
Define
pe(x) = L(x)/|I.(x)] = (1 + 2ez, + 2) "2 (2) + €, 29, 3)

and take ®. = P[¢.]. Then for small enough ¢ ®. is a diffeomorphism of the unit
ball onto itself having a diffeomorphic extension to the boundary. This for example
means that ®. is qg.c.

It is enough to prove that ®. is injective in B3 for small €. In order to do this
we use the following result due to Gilbarg and Hérmander see [7, Theorem 6.1 and
Lemma 2.1],

Proposition 1.11. The Dirichlet problem Au = f in Q, u = ug on 9Q € C' has
a unique solution u € CY%, for every f € C%®, and ug € CH%, and we have

(1.46) [ull1,a < C(l[uoll1,a.00 + |[fll0.a)

where C is a constant.
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Direct calculations yield
V@ (z) — Id| = |V P[¢. — Id](z)|

3 3
< C 5w (3100 (Ve(w) TP+ ( 3 [, (Vo) = 1))

exy 41 ? 1 2
—oxsp [ (-1t : ) +2(_1+>
|m£1 < (14 &2+ 2exq)3/2 V14 e? 4 2exy

2,.2 1/2 1
e SN
(1+e2+42ex1)3 (14 &2+ 2emwy)3/2 V1+ a2+ 2ax;
ala +x 1
f (1o —atay) 575 + = )2
1+ a? 4 2ax; 1+ a? + 2ax;
a0} a3 e
(14+a?+2azx1)® (14 a?+2axq1)3
Therefore

HH(I) VO (z) — Id| =0
E—
uniformly on B™.

It follows that there exist € > 0 such that

sup |V (z) — Id| < 1/2.
lz|<1

From
| (7) — Pe(y) +y — 2] < 1/2[z —yl,
we obtain

12|z — y| < |@:(2) — D= (y)|-
This implies that, ®. is injective.

Remark 1.12. It seems that, the previous example can be modified to the class
of all bi-Lipschitz harmonic diffeomorphism of the unit ball onto itself. Thus small
perturbations of the boundary value of harmonic q.c. transformation ¢ € C?(B"),
of the unit ball onto itself induce harmonic q.c. mappings.
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