
ON THE UNIVALENT SOLUTION OF PDE ∆u = f

BETWEEN SPHERICAL ANNULI

DAVID KALAJ

Abstract. It is proved that if u is the solution of PDE ∆u = f , that
maps two annuli on the space R3, then the annulus in co-domain cannot
be with arbitrary small modulus, providing that the annulus of domain
is fixed. Also it is improved the inequality obtained in [2] for harmonic
functions in R3. Finally it is given the new conjecture for harmonic
mappings in the space similar to the conjecture of J. C. C. Nitsche for
harmonic mapping in the plane related to the modulus of annuli.

1. Introduction and auxiliary results

Here B(0, 1) is the unit ball and S(0, 1) is the unit sphere, Ω is bounded
homeomorphic image of the ball. We will consider two norms of A =
(aij)n

i,j=1:
||A|| = sup{||Ax|| : ||x|| = 1}

and

||A||2 =

√√√√
n∑

i,j=1

a2
ij .

We will also consider the function

traceA =
n∑

i=1

aii.

If A is nonsingular matrix then there exists A−1 which is given by the
formula:

A−1 =
1

det A
(Ã)T ,

where Ã = (ãij)n
i,j=1 and

ãji = (−1)i+jdet
(
[alk]

k=1,...,j−1,j+1,...n
l=1,...,i−1,i+1,...n

)
.

We easily obtain the following formula

(1.1) trace(AAT ) = ||A||22.
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There are well known the following formulae

(1.2) ||A|| = max{
√

λ : det(AAT − λE) = 0},

(1.3) ||A−1|| = 1/min{
√

λ : det(AAT − λE) = 0},
where E is the identity matrix, and

(1.4) det(AAT ) = (detA)2.

The question arisen: what is relation between the norms ||·|| and ||·||2 and
when they coincides. In the following lemma it is given the partial answer
to that question.

Lemma 1.1. Let A : Rn → Rn be a linear operator such that A = [aij ]i,j=1,...,n.
a) There hold the inequality

(1.5) ||Ax1 × · · · ×Axn−1|| ≤ 1√
(n− 1)n−1

||A||n−1
2 ||x1 × · · · × xn−1||.

b) If A is K quasiconformal, then

(1.6) ||Ax1 × · · · ×Axn−1|| ≤ L(K,n)||A||n−1
2 ||x1 × · · · × xn−1||,

where
(1.7)

L(K, n) = min





K +
√

K2 − 1√
nn−2(n− 1 + (K +

√
K2 − 1)2)

,
1√

(n− 1)n−1



 .

The inequalities (1.5) and (1.6) are sharp.

Observe that limK→1 L(K, n) = n
1−n

2 .

Proof. a) If x1, . . . , xn1 are linearly dependent vectors, then the inequality
follows from the fact that

Ax1 × · · · ×Axn−1 = Ãx1 × · · · × xn−1 = 0.

Otherwise applying Gram-Schmidt algorithm we construct a sequence of
vectors fi,, i = 1, . . . , n such that < fi, fi >= 1, < fi, fj >= 0, for i 6= j and
L(x1, . . . , xi) = L(f1, . . . , fi) for i = 1, . . . , n− 1.

Let F = (fi,j) be n× n matrix defined such that fj =
∑n

i=1 fijei. Then

(1.8) ||AF ||2 = ||A||2.
Let us prove this fact. By definition

||AF ||22 =
n∑

i,j=1

< AT ei, F ej >2=
n∑

i,j=1

< AT ei, fj >2 .

Let AT ei =
∑

i,j bijfj . Multiplying by fk we obtain that < AT ei, fk >= bik.
Hence
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AT ei =
∑

i,j

< AT ei, fj > fj ,

and consequently

||AT ei||2 =
n∑

j=1

< AT ei, fj >2 .

Combining we obtain that

||A||22 =
n∑

i=1

||AT ei||2 =
n∑

i,j=1

< AT ei, fj >2= ||AF ||22.

Let xi =
∑n

j=1 xijfj , i = 1, . . . n− 1. Then

Ax1 × · · · ×Axn−1 =
∑

σ

εσx1,σ1 . . . xn−1σn−1Af1 × · · · ×Afn−1.

It follows that

||Ax1 × · · · ×Axn−1||2 = ||
∑

σ

εσx1,σ1 . . . xn−1σn−1Af1 × . . . Afn−1||2

= ||x1 × · · · × xn−1||2 · ||Af1 × . . . Afn−1||2 ≤ 1
(n− 1)n−1

(
n∑

i=1

||Afi||2)(n−1)/2

= ||x1×· · ·×xn−1||2· 1
(n− 1)n−1

)||AF ||n/2
2 = ||x1×· · ·×xn−1||2· 1

(n− 1)n−1
||A||n/2

2 .

If A = (aij) such that aii = 1, i = 1, . . . , n − 1 and aij = 0 otherwise and
xi = ei, then there hold the equality of the theorem.

b) From Ax1 × · · · ×Axn−1 = Ãx1 × · · · × xn−1 it follows that

||Ax1 × · · · ×Axn−1|| ≤ ||Ã||||x1 × · · · × xn−1||.
According to the Proposition ??

||Ã||22
||Ã||2 =

n∑

k=1

λ̃2
k

λ̃2
1

=
n∑

k=1

λ̃2
k

λ̃2
1

≥ 1+
n− 1
k2(Ã)

= 1+
n− 1
k2(Ã)

≥ (K +
√

K2 − 1)2 + n− 1
(K +

√
K2 − 1)2

.

It follows that

(1.9) ||Ã||2 ≤ K +
√

K2 − 1√
n− 1 + (K +

√
K2 − 1)2

||Ã||22

On the other hand

||Ã||2 =

√√√√
n∑

k=1

||Ãek||2 =

√√√√
n∑

k=1

||Ae1 × · · · ×Aek−1 ×Aek+1 × · · · ×Aen||2.
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After some elementary computations it follows that

(1.10) ||Ã||2 ≤ n√
nn
||A||n−1

2 .

From (1.9) and (1.10) we obtain the desired inequality. If A is the unit matrix
(or more general if A is any orthogonal transformation) then A is K = 1-
quasiconformal and the equality holds. Thus the inequality is sharp. ¤

Let f be a function between A and B. By N(y, f) we denote the cardinal
number of f−1(y) if the last set is finite and we set N(y, f) = +∞ in the
other case. The function y → N(y, f) is defined on B. If f is surjective then
N(y, f) ≥ 1 for every y ∈ B. The following proposition hold.

Proposition 1.2. [9] Let U be an open subset of Rn and let f : U → Rn be
C1 mapping. Then the function y → N(y, f) is measurable on Rn and

(1.11)
∫

Rn

N(y, f) dy =
∫

U
|J(x, f)|dx,

where J(x, f) is the Jacobian of f .

Further, let h be a C1 surjection from an n − 1 dimensional rectangle
Kn−1 onto the unit sphere Sn−1. Let the function f be defined in the n
dimensional rectangle Kn = [0, 1] × Kn−1 by f(r, u) = rh(u). Thus f is
a C1 surjection from Kn onto the unit ball Bn. It is easily to obtain the
formula J(x, f) = rn−1Dh(u), where x = (r, u) ∈ Kn, and Dh denotes the
norm of the vector product

Dh =
∣∣∣∣
∣∣∣∣
∂h

∂x1
× · · · × ∂h

∂xn−1

∣∣∣∣
∣∣∣∣ .

According to Proposition 1.2 it follows that
1
n

ωn−1 = µ(Bn) =
∫

Bn

dy ≤
∫

Bn

N(y, f) dy

=
∫

Kn

|J(x, f)| dx =
∫ 1

0
rn−1 dr

∫

Kn−1

Dh(u)du =
1
n

∫

Kn−1

Dh(u)du.

Consequently we have

(1.12)
∫

Kn−1

Dh(u)du ≥ ωn−1.

Proposition 1.3. Let u be a C1 surjection between the spherical rings
A(r1, r2) and A(s1, s2), and let S = u/||u||. Let Pn−1 be a closed n− 1 di-
mensional hyper-surface that separates the components of the set AC(r1, r2).
Then

(1.13)
∫

P n−1

||S′||n−1
2 dP ≥

√
(n− 1)n−1ωn−1,

and

(1.14)
∫

A(r1,r2)
||S′||n−1

2 dA ≥
√

(n− 1)n−1(r2 − r1)ωn−1,
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where ωn−1 denote the measure of Sn−1.

Proof. Let Kn−1 be an n−1-dimensional rectangle and let g : Kn−1 → Pn−1

be a parametrization of Pn−1. Then the function S ◦ g is a differentiable
surjection from Kn−1 onto the unit sphere Sn−1. Then by (1.12) we have

∫

Kn−1

DS◦gdK ≥ ωn−1.

According to Lemma 1.1 we obtain

DS◦g(x) =
∣∣∣∣
∣∣∣∣S′(g(x))

∂g(x)
∂x1

× · · · × S′(g(x))
∂g(x)
∂xn−1

∣∣∣∣
∣∣∣∣

≤ 1√
(n− 1)n−1

||S′(g(x))||n−1
2 Dg(x).

Hence we obtain

ωn−1 ≤ n√
nn

∫

Kn−1

||S′(g(x))||n−1
2 Dg(x)dK(x) =

n√
nn

∫

P n−1

||S′(ζ)||n−1
2 dσ(ζ).

Thus we have proved (1.13). It follows that
∫

A(r1,r2)
||S′||n−1

2 dA =
∫ r2

r1

(∫

Sn−1(0,t)
||S′||n−1

2 dS

)
dt ≥

√
(n− 1)n−1(r2−r1)ωn−1.

The proof of the theorem has been completed. ¤

2. The main result

Theorem 2.1. Let there exists a solution u of PDE

∆u = f, f : A(r1, r2) 7→ R3

that mapps annulus A(r1, r2) onto annulus A(s1, s2) of R3, and satisfies the
conditions ||x|| → ri ⇒ ||u(x)|| → si, i = 1, 2. Note that this special PDE is
the Poisson equation. Then for f ≡ 0 we have

(2.1)
s2

s1
≥ 1−

√
3 +

√
3(log

r2

r1
+

r1

r2
)

and for ||f || = maxr1≤||x||≤r2
||f(x)|| we have

(2.2) ||f || ≥ 6r2

(r1 − r2)2
· {[3(log

r2

r1
+

r1 − r2

r2
) + 1]s1 − s2}.

Note that if u is a homeomorphism then it satisfies the conditions of the
theorem. Note also that (2.1) is better than inequality s2

s1
≥ log r2

r1
+ r1

r2

obtain by the author in [2]. In figure 3.1 it is shown that the inequality (2.1)
is almost sharp.

Proof. Let u be a solution of given partial equation. For n > n0 > max{2, 1/(r2−
r1)} let

sn = sup({||y|| : y ∈ A(s1, s2) ∧ y 6∈ u(A(r1 + 1/n, r2))} ∪ {s1}).
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If y ∈ A(s1, s2) ∧ y 6∈ u(A(r1 + 1/n, r2)) then ||y|| ≤ sn hence y 6∈ A(sn, s2).
Consequently A(sn, s2) ⊂ Bn = u(A(r1 + 1/n, r2)). The sequence sn is
decreasing. Hence it is a convergent. Consequently only one of the following
statements hold:

(A) sn = s2 for every n > n0. Then there exists a sequence xn : r1 <
||xn|| < r1 + 1/n such that ||yn|| = ||u(xn)|| ≥ s2 − 1/n. Since
||xn|| → r1 it follows that ||u(xn)|| → s1. This is impossible.

(B) s1 < sn < s2 for every n > n′. Since u is a surjection it follows that
there exists a sequence xn : r1 < ||xn|| ≤ r1 + 1/n such that ||yn|| =
||u(xn)|| = sn. Since ||xn|| → r1 it follows that ||u(xn)|| = sn → s1.

(C) There exist n′′ ∈ N such that sn = s1 for every n ≥ n′′.
From (A), (B) and (C) we obtain limn→∞ sn = s1.

Let (B) hold. For every n > n′, let εn = sn − s1 such that s1 + 4εn < s2

and let ϕn be a C2 real function defined on (s1, s2) by

ϕn(s) =





s1 if s1 < s ≤ s1 + 2εn

hn(s) if s1 + 2εn ≤ s ≤ s1 + 4εn

s2 + s2−s1−εn
s2−s1−4εn

(s− s2) if s1 + 4εn ≤ s < s2

where the function hn(t) satisfies the conditions: h′n(t) ≥ 0, and h′′n(t) ≥ 0.
An example of such function is the function

hn(s) = s1

+
s2 − s1 − εn

s2 − s1 − 4εn

∫ s

s1+2εn

( ∫ x
s1+2εn

(t− s1 − 2εn)(s1 + 4εn − t) dt
∫ s1+4εn

s1+2εn
(t− s1 − 2εn)(s1 + 4εn − t) dt

)q

dx.

Here q = qn is chosen such that hn(s1 + 4εn) = s1 + εn. This is possible
because limq→+∞ hn(s1 + 4εn) = s1 and

hn(s1 + 4εn)|q=1 = s1 +
s2 − s1 − εn

s2 − s1 − 4εn

(s1 + 4εn − s1 − 2εn)
2

> s1 + εn.

It is obvious that

(2.3) 0 ≤ ϕ′n(s) → 1 and 0 ≤ ϕ′′n(s) → 0 as n →∞
for every s ∈ (s1, s2). Let ρ = ||u|| and let ρn be the function defined on
{x : r1 < ||x|| < r2} by ρn(x) = ϕn(ρ(x)).

If (C) holds we can simply set ρn(x) = ρ(x) and ϕn(x) = x.
Then

∆ρn(x) = ϕ′′n(ρ(x))||Λρ(x)||2 + ϕ′n(ρ(x))∆ρ(x).
By (2.3) it follows at once that

∆ρn(x) → ∆ρ(x) as n →∞
for every x ∈ A(r1, r2). Similarly we obtain

∂ρn

∂r
(x) → ∂ρ

∂r
(x) as n →∞



ON THE UNIVALENT SOLUTION OF PDE ∆u = f BETWEEN SPHERICAL ANNULI 7

uniformly on {x : ||x|| = r} for every r ∈ (r1, r2). Applying Green’s formula
for ρn on {x : r1 + 1/n ≤ ||x|| ≤ r}, we obtain

∫

||x||=r

∂ρn

∂r
dS −

∫

||x||=r1+1/n

∂ρn

∂r
dS =

∫

r1+1/n≤||x||≤r
∆ρn dV.

Since the function ρn is constant in some neighborhood of the sphere ||x|| =
r1 + 1/n, it follows that

∫

||x||=r

∂ρn

∂r
dS =

∫

r1+1/n≤||x||≤r
∆ρn dV.

Because of (??) and (2.3) it follows that the function ∆ρn is positive for
every n. Hence, by applying Fatou’s lemma, letting n →∞, we obtain∫

||x||=r

∂ρ

∂r
dS ≥

∫

r1≤||x||≤r
∆ρ dV.

Next, by applying (??) we obtain
∫

||x||=r

∂ρ

∂r
dS ≥

∫

r1≤||x||≤r
∆ρ dV =

∫

r1≤|z|≤r
ρ||S′||22 +

1
2

< f, S > dV

≥ s1

∫

r1≤||x||≤r
||S′||22dV − 2

3
π||f ||(r2 − r2

1).

According to the relation (1.14) we obtain that:

r2 ∂

∂r

∫

||ζ||=1
ρdS(ζ) ≥ 8πs1(r − r1)− 2

3
π||f ||(r2 − r2

1).

Dividing by r2 and integrating over [r1, r2] by r the previous inequality, we
get ∫

||ζ||=1
ρ(r2ζ) dS(ζ)−

∫

||ζ||=1
ρ(r1ζ) dS(ζ) ≥

8πs1(ln
r2

r1
+

r1 − r2

r2
)− 2π

3
||f ||(r1 − r2)2

r2
.

It follows that:

4π(s2 − s1) ≥ 8πs1(ln
r2

r1
+

r1 − r2

r2
)− 2π

3
||f ||(r1 − r2)2

r2

(s2 − s1) ≥ 2s1(ln
r2

r1
+

r1 − r2

r2
)− 1

6
||f ||(r1 − r2)2

r2

hence

s2

s1
≥ 1 + 2(ln

r2

r1
+

r1 − r2

r2
)− 1

6s1
||f ||(r1 − r2)2

r2

¤

Now the relations (2.1) and (2.2) easily follow.
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3. An example

The function

(3.1) f(x) =
(

1− rn−1R

1− rn
+

rn−1R− rn

(1− rn)|x|n
)

x

is a harmonic diffeomorphism between annular regions A(r, 1) and A(R, 1)
if and only if

(3.2) R ≤ nr

n− 1 + rn
.

The relation (3.2) leads us to the following conjecture: if u is a harmonic
diffeomorphism between the ring domains A(R, 1) and A(r, 1), then
there hold (3.2). Thus we generalize the conjecture of J.C.C. Nitsche for
n dimensional space.

The fact that f is diffeomorphism follows from the fact that f(x) =
x

|x|g(|x|) where

g(ρ) =
1− rn−1R

1− rn
ρ +

rn−1R− rn

(1− rn)ρn−1

is a diffeomorphism of [r, 1] onto [R, 1]. Moreover if h = g−1 then the
function F =

x

|x|h(|x|) is the inverse mapping of f . To prove that f is

harmonic mapping observe that

f(x) =
1− rn−1R

1− rn
x +

rn−1R− rn

1− rn
K[id](x)

where K[h] is Kelvin transform of the mapping h defined by

K[h](x) = |x|2−nh
(
x/|x|2)

and it is harmonic if only if h is harmonic, see [4] for details.

Remark 3.1. a) According to the example and to the theorem 2.1 we have
the inequality

3r

2 + r3
≤ 1

1 +
√

3(r − log r − 1)
for every r ∈ (0, 1). The inequality can be proved directly. See also figure 3.1
b) In [8], has been observed that if there exists a harmonic diffeomorphism
between two ring domains in the space, then the modulus of co-domain
cannot be small enough.
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Figure 1. The function bellow is 3r
2+r3 and above is 1

1+
√

3(r−log r−1)
.
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