
ON THE NITSCHE CONJECTURE FOR HARMONIC
MAPPINGS IN R2 AND R3

DAVID KALAJ

Abstract. We give the new inequality related to the J. C. C. Nitsche conjec-

ture (see [5]). Moreover we consider 2 and 3 dimensional case. Let A(r, 1) =

{z : r < |z| < 1}. Nitsche’s conjecture states that if there exists a univalent
harmonic mapping from an annulus A(r, 1) to an annulus A(s, 1), then s is at

most 2r/(r2 + 1).
Lyzzaik’s result states that s < t where t is the length of the Grötzsch’s

ring domain associated with A(r, 1) (see [3]). Weitsman’s result states that

s ≤ 1/(1 + 1/2(r log r)2) (see [8]).
Our result for two dimensional space states that s ≤ 1/(1 + 1/2 log2 r)

which improves Weitsman’s bound for all r, and Lyzzaik’s bound for r close

to 1. For three dimensional space states that s ≤ 1/(r − log r).

1. Introduction and auxiliary results

Let Rn be the real n−space with the norm ||x|| = (
∑n
i=1 x

2
i )

1/2 and basis
e1 = (1, 0, . . . , 0)T , . . . , en = (0, . . . , 0, 1)T . If x1, . . . , xn ∈ Rn are vectors xi =∑n
j=1 xijej , i = 1, . . . , n then their vector product x1× · · · × xn−1 is defined as the

vector

x = x1 × · · · × xn−1 =

∣∣∣∣∣∣∣∣
e1 e2 · · · en
x11 x12 · · · x1n

. . . . . . . . . . . . . . . . . . . . .
xn−1,1 xn−1,2 · · · xn−1,n

∣∣∣∣∣∣∣∣ ,
the determinant being developed w.r.t. the first line. The linear operator A : Rn →
Rn is identified with matrices A = [aij ]i,j=1,...,n. Two norms of A are considered:

||A|| = sup{||Ax|| : ||x|| = 1}, and ||A||2 = (
n∑
i=1

a2
ij)

1/2.

Let x =
∑n
i=1 xiei. Then Ax =

∑n
i=1A(xiei) =

∑n
i=1 xiAei. It follows that

||Ax|| ≤
n∑
i=1

|xi|||Aei|| ≤ (
n∑
i=1

x2
i )

1/2(
n∑
i=1

||Aei||2)1/2

= ||x|| · (
n∑
i=1

a2
ij)

1/2 = ||x|| · ||A||2.

It follows at once that

(1.1) ||A|| ≤ ||A||2.
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A twice differentiable mapping u defined between the domains Ω and Ω′ of the n
dimensional Euclidean space is called harmonic if it satisfies the differential equation
∆u = D11u + · · · + Dnnu = 0. The set R = A(r1, r2) = {r1 < ||x|| < r2}
(0 ≤ r1 < r2 ≤ ∞) we will call an annulus. We define the modulus m(R) of the
annulus R by the formula:

m(R) = m(A(r1, r2)) =
1

ωn−1
logn−1

(
r2

r1

)
,

where ωn−1 is the n− 1 dimensional Lebesgue measure of the unit sphere Sn−1.
With each doubly connected domain R in the complex plane there is associated

a unique number α > 1 such that R can be mapped one to one and conformally
onto an annulus whose outer and inner radii are in the ratio α : 1.

Let Γ be the family Γ′ of Jordan rectrifiable arcs on R which connect the com-
ponents of connectivity of the set Rc or the family Γ′′ of Jordan rectrifiable curves
that separates the components of connectivity of the set Rc if n = 2. Let p be a
positive integrable function defined on R such that the integral

A(p) =
∫
R

pn

is a positive real number. Then we say that p is an admissible metric. The family
of the admissible metrics we will denote by Π. Extremal length of the family Γ,
with respect to metric p is defined by

Lp = inf
γ∈Γ

∫
γ

p ds.

Proposition 1.1 (see [1] and [4]). If R = A(r1, r2) is an annulus and if m(R) is
the modulus of A(r1, r2), then:

(1.2) m(R) =

{
infp∈Π

A(p)
Ln

p
if n = 2 and Γ = Γ′′,

supp∈Π
Ln

p

A(p) if Γ = Γ′.

The relation (1.2) defines the modulus of an arbitrary doubly connected domain
R in Rn.

Lemma 1.2. Let A : Rn → Rn be a linear operator such that A = [aij ]i,j=1,...,n.
Then

(1.3) ||Ax1 × · · · ×Axn−1|| ≤ ||A||n−1
2 ||x1 × · · · × xn−1||.

Proof. Let

xi =
n∑
j=1

xijej , and let yi = Axi =
n∑
j=1

yijei for i ∈ {1, . . . , n− 1}.

Let Ã = [ãij ] be the matrix defined by

ãij = (−1)i+jdet
(

[alk]k=1,...,j−1,j+1,...n
l=1,...,i−1,i+1,...n

)
.
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Then

Ax1 × · · · ×Axn−1 =
n∑
i=1

∑
j∈Sn,i

εjx1,j1 · · · · · xn−1,jn−1Ae1 × · · · ×Aei−1

×Aei+1 × · · · ×Aen

=
n∑
i=1

∑
j∈Sn,i

εjx1,j1 · · · · · xn−1,jn−1(ã1i, . . . , ãni)

=
n∑
i=1

∑
j∈Sn,i

εjx1,j1 · · · · · xn−1,jn−1(−1)i+1Ãei

=
n∑
i=1

∑
j∈Sn,i

εjx1,j1 · · · · · xn−1,jn−1Ãe1 × · · · ei−1 × ei+1 × · · · en

= Ãx1 × · · · × xn−1,

where Sn,i is the set of the permutations of the set {1, . . . , n} \ {i}, and εj is the
sign of the permutation j. Now, using the inequality (1.1), we obtain

||Ax1 × · · · ×Axn−1|| ≤ ||Ã||||x1 × · · · × xn−1|| ≤ ||Ã||2||x1 × · · · × xn−1||

=

 n∑
i,j=1

ã2
ij

1/2

||x1 × · · · × xn−1||.

Next, we easily obtain that n∑
i,j=1

ã2
ij

1/2

≤
n∑
i=1

 n∑
j=1

ã2
ij

1/2

=
n∑
i=1

||Ae1× · · · ×Aei−1×Aei+1× · · · ×Aen||.

It follows at once that n∑
i,j=1

ã2
ij

1/2

≤
(
||Ae1||2 + · · ·+ ||Aen||2

)n−1
2 = ||A||n−1

2 .

This completes the proof of the lemma. �

If S = (S1, S2, . . . , Sn) : Rn → Rn and if ∇ denotes the gradient of the real
function, then we have S′ = (∇S1, . . . ,∇Sn).

Lemma 1.3. Let u be a harmonic mapping. Let u = ρ · S, where ρ = ||u||. Then

(1.4) ∆ρ = ρ||S′||22.

Proof. Let u = (u1, u2, . . . , un) (here ui are real harmonic), and let S = (S1, S2, . . . , Sn).
Since ui = ρSi, i ∈ {1, . . . , n} and consequently

ρ =
n∑
i=1

Siui,

we obtain:

(1.5) 0 = ∆ui = ∆ρSi + ∆Siρ+ 2∇ρ∇Si, i ∈ {1, . . . , n}
and
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(1.6) ∆ρ =
n∑
i=1

ui∆Si + 2
n∑
i=1

∇Si · ∇ui.

From (1.5) we obtain

(1.7) ∆ρ = ∆ρ||S||2 =
n∑
i=1

Si ·∆ρSi = −ρ
n∑
i=1

Si∆Si − 2
n∑
i=1

Si∇ρ · ∇Si.

Adding (1.6) and (1.7) we obtain

∆ρ =
n∑
i=1

(∇Si · ∇ui − Si∇ρ · ∇Si) = ρ

n∑
i=1

||∇Si||2.

This completes the proof. �

Let f be a function between A and B. By N(y, f) we denote the cardinal number
of f−1(y) if the last set is finite and we set N(y, f) = +∞ in the other case. The
function y → N(y, f) is defined on B. If f is surjective then N(y, f) ≥ 1 for every
y ∈ B. The following proposition hold.

Proposition 1.4. [6] Let U be an open subset of Rn and let f : U → Rn be C1

mapping. Then the function y → N(y, f) is measurable on Rn and

(1.8)
∫

Rn

N(y, f) dy =
∫
U

|J(x, f)|dx,

where J(x, f) is the Jacobian of f .

Further, let h be a C1 surjection from an n−1 dimensional rectangle Kn−1 onto
the unit sphere Sn−1. Let the function f be defined in the n dimensional rectangle
Kn = [0, 1] ×Kn−1 by f(r, u) = rh(u). Thus f is a C1 surjection from Kn onto
the unit ball Bn. It is easy to obtain the formula J(x, f) = rn−1Dh(u), where
x = (r, u) ∈ Kn, and Dh denotes the norm of the vector product

Dh =
∣∣∣∣∣∣∣∣ ∂h∂x1

× · · · × ∂h

∂xn−1

∣∣∣∣∣∣∣∣ .
According to Proposition 1.4 it follows that

1
n
ωn−1 = µ(Bn) =

∫
Bn

dy ≤
∫
Bn

N(y, f) dy

=
∫
Kn

|J(x, f)|dx =
∫ 1

0

rn−1 dr
∫
Kn−1

Dh(u)du =
1
n

∫
Kn−1

Dh(u)du.

Consequently we have

(1.9)
∫
Kn−1

Dh(u)du ≥ ωn−1.

Proposition 1.5. Let u be a C1 surjection between the spherical rings A(r1, r2) and
A(s1, s2), and let S = u/||u||. Let Pn−1 be a closed n−1 dimensional hyper-surface
that separates the components of the set AC(r1, r2). Then

(1.10)
∫
Pn−1

||S′||n−1
2 dP ≥ ωn−1,
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and

(1.11)
∫
A(r1,r2)

||S′||n−1
2 dA ≥ (r2 − r1)ωn−1,

where ωn−1 denote the measure of Sn−1.

Proof. Let Kn−1 be an n − 1-dimensional rectangle and let g : Kn−1 → Pn−1 be
a parametrization of Pn−1. Then the function S ◦ g is a differentiable surjection
from Kn−1 onto the unit sphere Sn−1. Then by (1.9) we have∫

Kn−1
DS◦gdK ≥ ωn−1.

According to Lemma 1.2 we obtain

DS◦g(x) =
∣∣∣∣∣∣∣∣S′(g(x))

∂g(x)
∂x1

× · · · × S′(g(x))
∂g(x)
∂xn−1

∣∣∣∣∣∣∣∣ ≤ ||S′(g(x))||n−1
2 Dg(x).

Hence we obtain

ωn−1 ≤
∫
Kn−1

||S′(g(x))||n−1
2 Dg(x)dK(x) =

∫
Pn−1

||S′(ζ)||n−1
2 dσ(ζ).

Thus we have proved (1.10). It follows that∫
A(r1,r2)

||S′||n−1
2 dA =

∫ r2

r1

(∫
Sn−1(0,t)

||S′||n−1
2 dS

)
dt ≥ (r2 − r1)ωn−1.

The proof of the theorem has been completed. �

Proposition 1.6. Let u = ρeiΘ be a C1 surjection between the rings A(r1, r2) and
A(s1, s2) of the complex space. Then:

(1.12)
∫
r1≤|z|≤r2

|∇Θ|2 dxdy ≥ 2π log
r2

r1
.

Proof. Because |∇Θ| is an admissible metric, according to Proposition 1.1, we have

(1.13)

∫
R
|∇Θ|2 dxdy

infγ∈Γ(
∫
γ
|∇Θ|| dz|)2

≥ m(R) = inf
ρ

A(ρ)
L2(ρ)

=
1

2π
log

r2

r1
,

where R = A(r1, r2) and Γ is the subset of curves which separates the components
of connectivity of RC , and m(R) is the modulus of R.

Next, if γ is Jordan curve, then the function Θ : γ \ γ(0)→ (0, 2π) is surjective.
According to (1.10) we obtain:

(1.14)
∫
γ

|∇Θ||dz| ≥ 2π.

Observe that, in this case S = eiΘ and ||S′||2 = |∇Θ|. (1.13) and (1.14) yield
(1.12). �
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2. The main result

Theorem 2.1. Let there be a harmonic surjection between the annular regions
A(r1, r2) and A(s1, s2) of Rn, n = 2, 3, satisfying the conditions ||x|| → ri ⇒
||u(x)|| → si, i = 1, 2. Then

(2.1)
s2

s1
≥
{

1 + 1
2 log2 r2

r1
if n = 2

log r2
r1

+ r1
r2

if n = 3
.

Note that if u is a harmonic homeomorphism then it satisfies the conditions of
the theorem.

Proof. Let u be a harmonic surjection between the corresponding annular regions.
For n > n0 > max{2, 1/(r2 − r1)} let

sn = sup({||y|| : y ∈ A(s1, s2) ∧ y 6∈ u(A(r1 + 1/n, r2))} ∪ {s1}).

If y ∈ A(s1, s2)∧ y 6∈ u(A(r1 + 1/n, r2)) then ||y|| ≤ sn hence y 6∈ A(sn, s2). Conse-
quently A(sn, s2) ⊂ Bn = u(A(r1 +1/n, r2)). The sequence sn is decreasing. Hence
it is a convergent sequence. Consequently only one of the following statements hold:

(A) sn = s2 for every n > n0. Then there exists a sequence xn : r1 < ||xn|| <
r1 + 1/n such that ||yn|| = ||u(xn)|| ≥ s2 − 1/n. Since ||xn|| → r1 it follows that
||u(xn)|| → s1. This is impossible.

(B) s1 < sn < s2 for every n > n′. Since u is a surjection it follows that there
exists a sequence xn : r1 < ||xn|| ≤ r1 + 1/n such that ||yn|| = ||u(xn)|| = sn. Since
||xn|| → r1 it follows that ||u(xn)|| = sn → s1.

(C) There exist n′′ ∈ N such that sn = s1 for every n ≥ n′′.
From (A), (B) and (C) we obtain limn→∞ sn = s1.
Let (B) hold. For every n > n′, let εn = sn − s1 such that s1 + 4εn < s2 and let

ϕn be a C2 real function defined on (s1, s2) by

ϕn(s) =


s1 if s1 < s ≤ s1 + 2εn

hn(s) if s1 + 2εn ≤ s ≤ s1 + 4εn
s2 + s2−s1−εn

s2−s1−4εn
(s− s2) if s1 + 4εn ≤ s < s2

where the function hn(t) satisfies the conditions: h′n(t) ≥ 0, and h′′n(t) ≥ 0. An
example of such function is the function

hn(s) = s1+
s2 − s1 − εn
s2 − s1 − 4εn

∫ s

s1+2εn

( ∫ x
s1+2εn

(t− s1 − 2εn)(s1 + 4εn − t) dt∫ s1+4εn

s1+2εn
(t− s1 − 2εn)(s1 + 4εn − t) dt

)q
dx.

Here q = qn is chosen such that hn(s1 + 4εn) = s1 + εn. This is possible because
limq→+∞ hn(s1 + 4εn) = s1 and

hn(s1 + 4εn)|q=1 = s1 +
s2 − s1 − εn
s2 − s1 − 4εn

(s1 + 4εn − s1 − 2εn)
2

> s1 + εn.

It is obvious that

(2.2) 0 ≤ ϕ′n(s)→ 1 and 0 ≤ ϕ′′n(s)→ 0 as n→∞

for every s ∈ (s1, s2). Let ρ = ||u|| and let ρn be the function defined on {x : r1 <
||x|| < r2} by ρn(x) = ϕn(ρ(x)).

If (C) holds we can simply set ρn(x) = ρ(x) and ϕn(x) = x.
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Then
∆ρn(x) = ϕ′′n(ρ(x))||∇ρ(x)||2 + ϕ′n(ρ(x))∆ρ(x).

By (2.2) it follows at once that

∆ρn(x)→ ∆ρ(x) as n→∞

for every x ∈ A(r1, r2). Similarly we obtain

∂ρn
∂r

(x)→ ∂ρ

∂r
(x) as n→∞

uniformly on {x : ||x|| = r} for every r ∈ (r1, r2). Applying Green’s formula for ρn
on {x : r1 + 1/n ≤ ||x|| ≤ r}, we obtain∫

||x||=r

∂ρn
∂r

dS −
∫
||x||=r1+1/n

∂ρn
∂r

dS =
∫
r1+1/n≤||x||≤r

∆ρn dV.

Since the function ρn is constant in some neighborhood of the sphere ||x|| = r1+1/n,
it follows that ∫

||x||=r

∂ρn
∂r

dS =
∫
r1+1/n≤||x||≤r

∆ρn dV.

Because of (1.4) and (2.2) it follows that the function ∆ρn is positive for every n.
Hence, by applying Fatou’s lemma, letting n→∞, we obtain∫

||x||=r

∂ρ2

∂r
dS ≥

∫
r1≤||x||≤r

∆ρ2 dV.

Next, by applying (1.4), (1.11) and (1.12), we obtain∫
||x||=r

∂ρ2

∂r
dS ≥

∫
r1≤||x||≤r

∆ρ2 dV =
∫
r1≤|z|≤r

||∇u||22dV

≥ s1

∫
r1≤||x||≤r

||S′||22dV ≥
{

2πs1 log r
r1

if n = 2
4πs1(r − r1) if n = 3

.

It follows that

rn−1 ∂

∂r

∫
||ζ||=1

ρdS(ζ) ≥
{

2πs1 log r
r1

if n = 2
4πs1(r − r1) if n = 3

.

Dividing by rn−1 and integrating over [r1, r2] by r the previous inequality, we get∫
||ζ||=1

ρ(r2ζ) dS(ζ)−
∫
||ζ||=1

ρ(r1ζ) dS(ζ)

≥

{
πs1 log2 r2

r1
if n = 2

4πs1

(
log r2

r1
− r1

r2−r1
r2r1

)
if n = 3

.

Dividing by 2s1 if n = 2 and by 4s1 if n = 3 one gets

s2

s1
− 1 ≥

{ 1
2 log2 r2

r1
if n = 2

log r2
r1
− r2−r1

r2
if n = 3

.

Thus, the proof of the theorem has been completed. �

The following example justifies the Nitsche conjecture.
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Example 2.2. Let R = A(r, 1) and let R′ = A(s, 1). Then the function

(2.3) f(z) =
1− rs
1− r2

z +
rs− r2

1− r2

1
z

is a harmonic diffeomorphism between R and R′ if and only if

(2.4) s ≤ 2r
1 + r2

.

Moreover under the same condition the function u(z) = f(zn) satisfies the con-
ditions of Theorem 2.1 and maps the annulus R = A( n

√
r, 1) onto the annulus

R′ = A(s, 1). From (2.4) it follows that s ≤ 1
1 + 1/2 log2 n

√
r

(see the following

remark).

Remark 2.3. a) The inequality of Nitsche’s conjecture is better than the inequal-
ities obtained in this paper. It can be seen by the following. We have to prove the
inequality

2r
1 + r2

≤ 1
1 + 1

2 log2 r
.

With r = u2, the previous inequality is equivalent to

f(u) =
1
u
− u+ 2 log u ≥ 0.

Because of f ′(u) = −
(

1−u
u

)2
< 0 and f(1) = 0 we deduce at once that f(u) ≥ 0

and inequality is proved. Similarly we can prove the inequality
2r

1 + r2
≤ 1
r − log r

.

Thus the Nitsche conjecture makes sense for 3 dimensional case, and it would be
interesting to construct the corresponding canonical harmonic homeomorphism as
in (2.3).

b) On the other hand the inequality obtained in this paper is better than Lyz-
zaik’s inequality if the modulus of the domain is close to 0 and this fact easy follows
from the inequalities obtained in [4] for the function µ(t), defined as modulus of
the Grötzsch’s ring domain R = {z : |z| < 1} \ [0, t].

c) In [5], has been observed that if there exists a harmonic diffeomorphism be-
tween two ring domains in the space, then the modulus of co-domain cannot be
small enough. The question arise which inequality hold for n−dimensional Euclid
space, n > 3.

The following examples shows that the converse inequality to inequality (2.1)
does not hold. Moreover, there are harmonic diffeomorphisms between the annulus
A(1, 2) and the arbitrarily large module annulus.

Example 2.4. Let f : A(1, 2) → A(1, 2n) be the function defined by f(z) = zn.
Then f satisfies the condition of the Theorem 2.1 and m(A(1, 2n)) = n ·m(A(1, 2)).

Example 2.5. Let f : A(1, 2)→ A(0, 1) be the function defined by

f(z) =
2
3

(
z − 1

z

)
.

Then f is a harmonic diffeomorphism.
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