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Abstract. It is proved that any quasiconfomal harmonic mapping of the unit
disk onto a surface with rectifiable boundary has absolutely continuous exten-

sion to the boundary. This extends the classical case for conformal mappings

and minimal surfaces treated by Kellogg, Nitsche, Tsuji etc.

1. Introduction and notation

A mapping u = (u1, . . . , un) : D → Rn is called harmonic in a region D ⊂ C
if for k = 1, . . . , n, uk is real-valued harmonic functions in D; that is uk is twice
differentiable and satisfies the PDE

∆uk := ukxx + ukyy = 0.

Let

P (r, x) =
1− r2

2π(1− 2r cosx+ r2)
denote the Poisson kernel. Then every bounded harmonic mapping u : U → Rn,
n ≥ 1, defined on the unit disc U := {z : |z| < 1} has the following representation

(1.1) u(z) = P [f ](z) =
∫ 2π

0

P (r, x− ϕ)f(eix)dx,

where z = reiϕ and f is a bounded integrable function defined on the unit circle
S1.

The Hardy space Hp (hp) for 0 < p < ∞ is the class of holomorphic functions
f : U→ C (harmonic mappings u : U→ Rn) on the open unit disk satisfying

sup
0<r<1

(
1

2π

∫ 2π

0

∣∣f(reiθ)
∣∣p dθ

) 1
p

<∞.

( sup
0<r<1

(
1

2π

∫ 2π

0

∥∥u(reiθ)
∥∥p dθ

) 1
p

<∞.)

A smooth mapping u : U 7→M2 ⊂ Rn is called K q.c. (K ≥ 1) if

(1.2) ‖ux‖2 + ‖uy‖2 ≤ (K +
1
K

)(‖ux‖2 · ‖uy‖2 − 〈ux, uy〉2)1/2, z = x+ iy ∈ U.

If K = 1 then (1.2) is equivalent to the system of the equations

(1.3) ‖ux‖2 = ‖uy‖2 and 〈ux, uy〉 = 0,
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which represent isometrical (conformal) coordinates of the surface M2. If u is har-
monic and satisfies the system (1.3) then M2 is a minimal surface. We will consider
harmonic quasiconformal mappings (surfaces) and investigate their character at the
boundary. These facts are well known, if w is a conformal mapping of the unit disk
onto a domain with Jordan rectifiable boundary, then w as well as its inverse, has
a absolutely continuous extension to the boundary and its boundary function maps
the null sets onto null sets (a result of F. and M. Riesz, [13]). This result has been ex-
tended to the minimal surface by Tsuji ([15]). Concerning quasiconformal mapping
in the plane Ahlfors and Beurling showed that the boundary function of a quasicon-
formal mapping of the unit disk onto itself need not be absolutely continuous [1].
The similar answer has been given by Heinonen for quasiconformal mappings in the
space ([6] and [6]). Since quasiconformal harmonic mappings are generalizations
of conformal mappings and quasiconformal harmonic surfaces are generalization
of minimal surfaces, it was intrigue to establish this problem for these class of
mapping. For the first class (quasiconformal harmonic mappings between plane
domains) the answer is positive and this is an result of M. Mateljevic, M. Pavlović,
D. Kalaj ([10]). See also [11] for the reproduction of this result. In this paper we
show that, harmonic quasiconformal surface u : U = intS1 → M2 = intγ ⊂ Rn is
absolutely continuous on the boundary, as well as its inverse function (Theorem 2.1
and Remark 2.7). Next we show that, the null sets in S1 corresponds to the null
sets in γ and the null sets in γ corresponds to the null sets in S1 (Theorem 2.6).

Lemma 1.1. If u is a quasiconformal mapping of the unit disk onto a surface
M2 ⊂ Rn, then for k = K2−1

K2+1 we have

(1.4)
| 〈ux, uy〉 |
‖ux‖‖uy‖

≤ k < 1,

and

(1.5)
1
K
≤ ‖ux‖
‖uy‖

≤ K.

Proof. From (1.2), denoting

µ =
| 〈ux, uy〉 |2

‖ux‖2‖uy‖2

and

λ =
‖ux‖
‖uy‖

we obtain

1
λ2

+ λ2 ≤ (
1
K2

+K2)(1− µ)− 2µ.

Thus

µ ≤
K2 + 1

K2 − 1
λ2 − λ2

K2 + 1
K2 + 2

≤
K2 + 1

K2 − 2
K2 + 1

K2 + 2
=

(K − 1/K)2

(K + 1/K)2
.

Therefore
| 〈ux, uy〉 |
‖ux‖‖uy‖

≤ K2 − 1
K2 + 1

.
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To prove (1.5) use the inequality (1.2) again. We first have

‖ux‖2 + |uy|2 ≤ (K +
1
K

)‖ux‖‖uy‖.

Dividing by ‖uy‖2 we have

λ2 − (K +
1
K

)λ+ 1 ≤ 0.

Since λ1 = K and λ2 = 1
K are the solutions of the equation

λ2 − (K +
1
K

)λ+ 1 = 0,

it follows that
1
K
≤ ‖ux‖
‖uy‖

≤ K

as desired.
�

Assume that u : U → Rn is a harmonic mapping defined in the unit disk U.
Consider auxiliary family of mappings ωr(z) = u(rz). Then ωr is harmonic and
there holds ωr(z) = P [gr](z) where gr(eiϕ) = u(reiϕ). Let lr =

∫ 2π

0
||u(reiθ)||dθ

and choose ρ, r < 1.
Take h ∈ Rn : ||h|| = 1. Then

|
〈∫ 2π

0

P (ρ, θ − ϕ)u(reiθ)dθ, h
〉
| = |

∫ 2π

0

P (ρ, θ − ϕ)
〈
u(reiθ), h

〉
dθ|

≤
∫ 2π

0

P (ρ, θ − ϕ)|
〈
u(reiθ), h

〉
|dθ

≤
∫ 2π

0

P (ρ, θ − ϕ)||u(reiθ)||dθ.

Therefore

(1.6) ‖
∫ 2π

0

P (ρ, θ − ϕ)u(reiθ)dθ‖ ≤
∫ 2π

0

P (ρ, θ − ϕ)‖u(reiθ)‖dθ.

Using (1.6) we obtain

∫ 2π

0

||u(rρeiϕ)||dϕ =
∫ 2π

0

‖ωr(ρeiϕ)‖dϕ =
∫ 2π

0

‖
∫ 2π

0

P (ρ, θ − ϕ)u(reiθ)dθ‖dϕ

≤
∫ 2π

0

∫ 2π

0

P (ρ, θ − ϕ)‖u(reiθ)‖dθdϕ =
∫ 2π

0

‖u(reiϕ)‖dϕ.

(1.7)

Thus we proved the following lemma of Rado ([12]).

Lemma 1.2. The mapping r → lr considered before is increasing.

Lemma 1.3. Assume that u1, u2,...,um are harmonic mappings in the unit disk U
and continuous in U. Then the function f(z) =

∑m
i=1 ‖ui‖ satisfies the maximum

principle
f(z) ≤ max

|z|=1
f(z).
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Proof. Let us show that f is subharmonic. To do so it is enough to prove that

∆f ≥ 0.

Let Si be defined by
ui = ||ui||Si.

Since
∆||ui|| = ||ui||||∇Si||2,

it follows that

∆f =
n∑
i=1

∆||ui|| ≥ 0.

Now the conclusion of the lemma follows from the maximum principle of subhar-
monic functions. �

2. The main results

Theorem 2.1. If u(z) = P [F ](z) is a quasiconformal harmonic mapping of the
unit disk U onto a surface M2 ⊂ Rn bounded by a rectifiable Jordan conture γ,
then F is absolutely continuous function.

We need the following propositions.

Proposition 2.2. [14] For an analytic function f in the unit disk U to be con-
tinuous in U and absolutely continuous in S1 it is necessarily and sufficient that
f ′ ∈ H1. If f ′ ∈ H1, then for a.e. θ ∈ [0, 2π) we have

df(eiθ)
dθ

= ieiθf ′(eiθ),

where
f ′(eiθ) := lim

r→1
f ′(reiθ)

and df(eiθ)
dθ is the derivative of the function θ → f(eiθ).

Let

P (r, x) =
1

2π
1− r2

1 + r2 − 2r cosx
denote the Poisson kernel.

Proposition 2.3. [5] For an analytic function f in the unit disk U to have the
representation in U be means of Poisson integral

f(reiϕ) =
∫ 2π

0

g(eiθ)P (r, ϕ− θ)dθ,

where g ∈ L1(S1) it is necessarily and sufficient that f ∈ H1(U).

Proof. Consider the function

lr =
∫ 2π

0

∣∣∣∣ ∂∂ϕu(reiϕ)
∣∣∣∣ dϕ, 0 ≤ r < 1.

Then r → lr is increasing and is equal to the length of the smooth curve u(S(r)),
where S(r) = rS1. On the other hand the length of the curve u(S(r)) is equal to
the limit of the following sequence when n→∞

snr (z) =
∣∣∣u(z)− u(ze2πi/n)

∣∣∣+∣∣∣u(ze2πi/n)− u(ze4πi/n)
∣∣∣+· · ·+∣∣∣u(ze2(n−1)πi/n)− u(z)

∣∣∣ ,
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z : |z| = r. By using Lemma 1.3, because the mapping u is continuous up to the
boundary, we obtain

snr (z) ≤ max
ϕ∈[0,2π]

[
|u(eiϕ)− u(eiϕe2πi/n)|+ |u(eiϕe2πi/n)− u(eiϕe4πi/n)|+

· · ·+ |u(eiϕe2(n−1)πi/n)− u(eiϕ)|
]
.

Letting n→∞ (because u(S1) is a rectifiable curve) we infer that lr < l(u(S1)) <
∞.

Next we have

u(z) = (Re(a1(z)),Re(a2(z)), . . . ,Re(an(z))),
where ai are analytic functions.

It follows that

ux = (Re(a′1(z)),Re(a′2(z)), . . . ,Re(a′n(z))),

and
uy = −(Im(a′1(z)), Im(a′2(z)), . . . , Im(a′n(z))).

On the other hand
∂u

∂ϕ
= ruy cosϕ− rux sinϕ.

Therefore

‖ ∂u
∂ϕ
‖2 = r2‖ux‖2 sin2 ϕ+ r2‖ux‖2 cos2 ϕ− 2r2 cosϕ sinϕ 〈ux, uy〉 .

By using (1.5) we obtain

‖ ∂u
∂ϕ
‖2 ≥ r2‖uy‖2 sin2 ϕ+ r2‖ux‖2 cos2 ϕ− 2r2 cosϕ sinϕk‖ux‖‖uy‖

= (1− k)r2(‖uy‖2 sin2 ϕ+ ‖ux‖2 cos2 ϕ) + kr2(cosϕ‖ux‖ − sinϕ‖uy‖)2

≥ (1− k)r2(‖uy‖2 sin2 ϕ+ ‖ux‖2 cos2 ϕ)

≥ r2 1− k
2K

(‖ux‖2 + ‖uy‖2) = r2 K

1 +K2
(‖ux‖2 + ‖uy‖2)

Thus

(2.1) ‖ ∂u
∂ϕ
‖2 ≥ r2 K

1 +K2
(‖ux‖2 + ‖uy‖2).

It follows that

|za′i(z)| ≤ r(‖ux‖2 + ‖uy‖2)1/2 ≤
√

1 +K2

K
‖ ∂u
∂ϕ
‖.

Since ∫ 2π

0

‖ ∂u
∂ϕ
‖dϕ ≤ l(γ) <∞

we infer that

‖ ∂u
∂ϕ
‖ ∈ h1(U).

Therefore for all i = 1, . . . , n we have

za′i(z) ∈ H1(U)
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and consequently
a′i(z) ∈ H1(U).

By using Proposition 2.2 and Proposition 2.3 it follows that for every i = 1, . . . , n
there exists an absolutely continuous function gi such that

ai(z) = P [gi(eiθ)](z), i = 1, . . . , n.

Henceforth
u = P [F ](z)

where
F (eiθ) = (Re g1(eiθ), . . . ,Re gn(eiθ))

in an absolutely continuous function.
�

Corollary 2.4. It follows from the previous considerations, together with the Fa-
tou’s lemma the relation

lim
r→1

lr =
∫ 2π

0

‖∂F
∂ϕ
‖dϕ = µ(γ).

Remark 2.5. Since quasiconformal harmonic surface has the representation

u(z) = (Re(a1(z)),Re(a2(z)), . . . ,Re(an(z))),

it follows from that our quasiconformal surface defines a minimal surface

w(z) = (a1(z), a2(z), . . . , an(z)) : U→ Cn.

Namely

||wx||2 =
n∑
k=1

|a′k(z)|2 =
n∑
k=1

|ia′k(z)|2 = ||wy||2

and

〈wx, wy〉 =
n∑
k=1

Re(ia′k(z)a′k(z)) = 0.

According to (2.1) minimal surface w is also a surface with rectifiable boundary,
and thus it has absolutely continuous extension to the boundary. It is well-known
the following isoperimetric inequality for minimal surfaces

A(w) ≤ 1
4π
L2(w),

where

A(w) =
1
2

∫
U

|wx|2 + |wy|2dxdy

and

L(w) =
∫
S1
|dw|.

Since

A(u) =
∫
U

√
|ux|2|uy|2 − 〈ux, uy〉du

it follows that
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K

2K2 + 2

∫
U

(|ux|2 + |uy|2)dxdy ≤ A(u)

≤ 1
2

∫
U

(|ux|2 + |uy|2)dxdy

=
1
4

∫
U

|wx|2 + |wy|2dxdy

=
1
2
A(w).

A(u)
L2(u)

.

Theorem 2.6. If u = P [F ] is quasiconformal harmonic of the unit disk U onto
a surface M2 with rectifiable boundary γ, then for every Lebesgue measured set
E ⊂ S1 F (E) ⊂ γ is measured and

µ(E) = 0⇔ µ(F (E)) = 0.

Proof. Assume that µ(E) = 0. Prove that µ(F (E)) = 0. Since F is absolutely
continuous function it follows that

µ(γ) =
∫ 2π

0

‖∂F
∂ϕ
‖dϕ.

Thus
µ(E) = 0⇒ µ(F (E)) = 0.

On the other hand by (2.1)

‖∂F
∂ϕ

(eiϕ)‖ = lim
z→eiϕ

‖ ∂u
∂ϕ

(reiϕ)‖ ≥ K

1 +K2

n∑
i=1

|a′i(eiϕ)|2.

By Luzin-Privalov uniqueness theorem
n∑
i=1

|a′i(eiϕ)|2 > 0, for a.e. ϕ ∈ [0, 2π]

if at least one of the analytic functions ai is nonconstant.
Therefore

(2.2) ‖∂F
∂ϕ

(eiϕ)‖ > 0, for a.e. ϕ ∈ [0, 2π].

Next we will prove that a null set on γ corresponds to a null set on S1. Let
E be a null set on γ which corresponds to K on S1 and E′ be a null set which
contains E and is Gδ, which corresponds to K ′ on S1. Then E′ contains E and
being the continuous image of Gδ is Gδ and hence is measurable. Hence if we
deduce µ(E′) = 0 from µ(K ′) = 0, then µ(E) = 0 follows a fortiori, so that we
assume that E is measurable. Since µ(K) = 0, we can cover E by a sequence of
open intervals ∆sn such that

∑∞
k=1 |∆sk| < ε where |∆sn| denotes the arc length

of ∆sn. Let ∆θn correspondents to ∆sn on S1, then

|∆sn| =
∫

∆θn

‖∂F
∂ϕ

(eiϕ)‖dϕ,
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and therefore

ε >

∞∑
k=1

|∆sk| =
∞∑
k=1

∫
∆θn

‖∂F
∂ϕ

(eiϕ)‖dϕ ≥
∫
E

‖∂F
∂ϕ

(eiϕ)‖dϕ.

Since ε is arbitrary, we have∫
E

‖∂F
∂ϕ

(eiϕ)‖dϕ = 0.

From (2.2) we infer µ(E) = 0 as desired.
�

Remark 2.7. The previous theorem implies that u−1 : M2 → U is absolutely
continuous on γ; that is for every ε > 0 there exists δ > 0 such that

m∑
k=1

|∆sk| < δ ⇒
m∑
k=1

|∆θk| < ε.
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