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Abstract. Let h2 be the harmonic Hardy space and b4 be the harmonic
Bergman space of harmonic functions on the open unit disk U. Then for
any function f in h2 we prove the following isoperimetric type inequality

‖f‖b4 ≤
4

√
3 + 2

√
2

2
‖f‖h2 ,

where ‖ · ‖b4 and ‖ · ‖h2 are norms in the spaces b4 and h2, respectively.

1. Introduction

Throughout the paper we let U = {z ∈ C : |z| < 1} be the open unit disk
in the complex plane C, and let T = {z ∈ C : |z| = 1} be the unit circle in
C. The normalized area measure on U will be denoted by dσ. In terms of
real (rectangular and polar) coordinates, we have

dσ =
1
π
dxdy =

1
π
rdrdθ, z = x+ iy = reiθ.

Further, dt/2π denotes the normalized Lebesgue measure on T.
For 1 ≤ p < +∞ let Lp(U, σ) = Lp denote the familiar Lebesgue space

on U with respect to the measure σ. For such a p, the Bergman space Ap is
the space of all holomorphic functions on U such that

(1.1) ‖f‖p :=
(∫

U
|f(z)|p dσ

)1/p

< +∞.

We denote by Ap0 the set of all functions f ∈ Ap for which f(0) = 0. Recall
that the harmonic Bergman space bp is the space of all (complex) harmonic
functions f on the disk U such that the integral in (1.1) is finite.

The harmonic Hardy space hp is defined as the space of (complex) har-
monic functions f on U such that

(1.2) ‖f‖hp := sup
0≤r<1

(∫ 2π

0
|f(reit)|p dt

2π

)1/p

<∞.

If f ∈ hp then by [1, Theorem 6.13] the radial limit

f(eit) = lim
r→1

f(reit)
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exists for almost every eit in T and the boundary function f(eit) is integrable
on T. It is well known that

‖f‖php = lim
r→1

∫ 2π

0
|f(reit)|p dt

2π
=
∫ 2π

0
|f(eit)|p dt

2π
.

The Hardy space Hp consists of all holomorphic functions f ∈ hp. For
more information on Bergman and Hardy spaces, see the book [5].

The starting point of this paper is the well known isoperimetric inequality
for Jordan domains and isoperimetric inequality for minimal surfaces due to
Carleman [3]. Among the other results, Carleman in [3] proved that if u is
a harmonic and smooth function on the closed disk U : |z| ≤ 1, then∫

U
e2u dxdy ≤ 1

4π

(∫ 2π

0
eu dt

)2

.

By using a similar approach as Carleman, Strebel in [7] proved that if f is
in H1 then

(1.3)
∫

U
|f(z)|2 dxdy ≤ 1

4π

(∫
T
|f(eit)| dt

)2

with ”=” instead of ”≤” if and only if

f(z) =
α

1− az
,

where |a| < 1, α ∈ C. This inequality has been proved independently by
Mateljević and Pavlović in [6].

It is useful to observe that for our purposes the inequality (1.3) may be
written in terms of the A2 and H1 norms as

(1.4) ‖f‖A2 ≤ ‖f‖H1 , f ∈ H1.

Further, Burbea [2] generalized the inequality (1.3) as

n− 1
π

∫
U
|f(z)|np(1− |z|2)n−2 dxdy ≤

(
1

2π

∫ 2π

0
|f(eit)|p dt

)n
,

where n ≥ 2 is a positive integer and f ∈ Hp for some 0 < p < +∞.
Recently, Hang, Wang and Yang [4] extended the above type inequality for
harmonic functions defined on the unit ball of Rn with n ≥ 3.

Although we are unable to establish the harmonic version of the inequality
(1.3), in this paper we prove its h2–analogue as follows.

Theorem 1.1 (The main result). Suppose f is a nonzero function in the
space h2. Then

(1.5)
∫

U
|f(z)|4 dxdy < 3 + 2

√
2

8π

(∫
T
|f(eit)|2 dt

)2

.
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Remark 1.2. Note that by (1.5), it follows that h2 ⊂ b4. Further, in terms
of the b4 and h2 norms of the function f ∈ h2, the inequality (1.5) can be
written in the form

‖f‖b4 ≤
4

√
3 + 2

√
2

2
‖f‖h2 ,

with the estimate 4

√
(3 + 2

√
2)/2 ≈ 1.306563.

Remark 1.3. The question arises can we replace in (1.5) |f(z)|4 and |f(eit)|2
by |f(z)|2p and |f(eit)|p, respectively, for some p > 0. It can be shown that
for p > 1 there holds an isoperimetric type inequality, but for p = 1 the
answer is negative (see Example 1.4 below). Furthermore, it remains an
open question whether the inequality (1.5) is sharp. The function from Ex-
ample 1.5 shows that the best constant in (1.5) is greater than or equal to
5/8π.

Example 1.4. Let for |a| < 1

fa(z) =
1− |a|2|z|2

|1− za|2
.

Then ∫
U
|fa(z)|2dσ →∞

and ∫
T
|fa(eit)|dt = 2π.

Example 1.5. Let for |a| < 1

fa(z) = Re
z

1− az
.

Then for a→ 1−

∫
U
|fa(z)|4dxdy :

(
3 + 2

√
2

8π

(∫
T
|fa(eit)|2dt

)2
)
→ 5

3 + 2
√

2
≈ 0.857864.

2. Preliminaries

In order to prove Theorem 1.1, we will need some auxiliary results.

Lemma 2.1. For any complex number z there holds

(2.1) |zRe (z)| =
√

2
2
|z|
√
|z|2 + Re (z2).

Proof. An easy calculation shows that

|z2 + |z|2| =
√

2|z|
√
|z|2 + Re (z2).

Now (2.1) follows from the previous identity and the identity |z2 + |z|2| =
2|zRe (z)|. �
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Lemma 2.2. Let h be a function in A1
0. Then

(2.2)
∫

U
h(z) dσ =

∫
U
h̄(z) dσ =

∫
U

Re (h(z)) dσ = 0.

Proof. Since h(0) = 0, we can write h(z) =
∑∞

n=1 anz
n. Therefore, the first

two equalities in (2.2) immediately follow from the fact that
∫ 2π
0 eint dt = 0

for each n = ±1±2, · · · . From this and the identity 2Re (h(z)) = h(z)+h̄(z)
it follows that

∫
U Re(h(z)) dσ = 0. �

Lemma 2.3. If h is a function in the space A2
0, then

(2.3)
∫

U
|h(z)|2 dσ = 2

∫
U
|Re (h(z))|2 dσ.

Proof. Since

|Re (h(z))|2 =
∣∣∣∣h(z) + h̄(z)

2

∣∣∣∣2 =
1
4

(h(z) + ¯h(z))(h̄(z) + h(z))

=
1
4

(2|h(z)|2 + h2(z) + h̄2(z)) =
1
2
|h(z)|2 +

1
2

Re (h2(z)),

by integrating this and applying the fact that by Lemma 2.2,
∫

U Re (h2(z)) dσ =
0, we obtain (2.3). �

Lemma 2.4. Let h be a function in the space A2
0 that is not identically zero

on U. Then

(2.4)
∫

U
|h(z)Re (h(z))| dσ <

√
2

2

∫
U
|h(z)|2 dσ.

Proof. By the identity (2.1) of Lemma 2.1, we have

(2.5) |h(z)Re (h(z))| =
√

2
2
|h(z)|

√
|h(z)|2 + Re (h2(z)).

By applying Cauchy-Schwartz inequality and the fact that by Lemma 2.2,∫
U Re (h2(z)) dσ = 0, we obtain

( ∫
U
|h(z)|

√
|h(z)|2 + Re (h2(z)) dσ

)2
≤
∫

U
|h(z)|2 dσ

(∫
U

(|h(z)|2 + Re (h2(z))) dσ
)

=
(∫

U
|h(z)|2 dσ

)2

+
(∫

U
|h(z)|2 dσ

)(∫
U

Re (h2(z)) dσ
)

=
(∫

U
|h(z)|2 dσ

)2

.

The above inequality and (2.5) immediately yield the desired inequality (2.4)
with ≤ instead of <. In order to show the strong inequality, we first observe
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that the equality in the previously applied Cauchy-Schwartz inequality holds
if and only if

(2.6) |h2(z)| = λ
√
|h(z)|2 + Re (h2(z))

for almost every z ∈ U and a nonnegative constant λ. If λ = 0 then obvi-
ously, we have h ≡ 0 on U. If λ > 0 then (2.6) implies that Re (h2(z)) =
1−λ2

λ2 |h2(z)| for almost every z ∈ U. Therefore, by the continuity of the func-
tions h2 and Re (h2) on the disk U, it follows that Re (h2(z)) = 1−λ2

λ2 |h2(z)|
for each z ∈ U. The last equality yields

∆|h2(z)| = 4|h′(z)|2 = 0

and hence
Re (h2(z)) = 0.

Thus, the function h is constant on U. Since h(0) = 0, we obtain h ≡ 0 on
U. This contradiction completes the proof. �

3. Proof of the main result

Proof of Theorem 1.1. For simplicity, in this proof we shall often write h
instead of h(z). Since the unit disk is simply connected, we have the repre-
sentation f = g + h, where g and h are holomorphic functions on the unit
disk U such that h(0) = 0. Direct calculations yield

(3.1) |f |4 = |g|4 + |h|4 + 4|g|2|h|2 + 4(|g|2 + |h|2)Re(hg) + 2Re((hg)2).

Suppose g(z) =
∑∞

n=0 anz
n and h(z) =

∑∞
n=1 bnz

n be the Taylor expansions
on U of functions g and h, respectively. Since f ∈ h2, we have

‖f‖4h2 =
(∫

T
|f(eit)|2 dt

2π

)2

=

( ∞∑
n=0

|an|2 +
∞∑
n=1

|bn|2
)2

=
(∫

T
|g(eit)|2 dt

2π
+
∫

T
|h(eit)|2 dt

2π

)2

= (‖g‖2h2 + ‖h‖2h2)2.

(3.2)

Thus the functions h and g belong to the Hardy space H2 and according
to (1.5), g and h are also in A4. From this and the identity gh = ((g+h)2−
(g − h)2)/4 we see that gh is in A2

0. Therefore, the all terms on the right of
(3.1) are integrable on U. Therefore, we have f ∈ b4, or equivalently

‖f‖4b4 =
∫

U
|f(z)|4 dσ < +∞.

By applying the inequality (1.4) to the functions g2, h2 ∈ H1, we imme-
diately obtain

(3.3)
∫

U
|g(z)|4 dσ = ‖g2‖2A2 ≤ ‖g2‖2H1 ,
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(3.4)
∫

U
|h(z)|4 dσ = ‖h2‖2A2 ≤ ‖h2‖2H1 .

Since gh ∈ A2, Cauchy-Schwartz inequality together with inequalities (3.3)
and (3.4) yields∫

U
|g(z)|2|h(z)|2 dσ ≤

√∫
U
|g(z)|4 dσ ·

√∫
U
|h(z)|4 dσ

= ‖g2‖A2 · ‖h2‖A2

≤ ‖g2‖H1 · ‖h2‖H1

= ‖g‖2H2 · ‖h‖2H2 .

(3.5)

By using the facts that h(0)g(0) = 0, gh ∈ A2
0, Lemma 2.3 to the holo-

morphic function gh, and Cauchy-Schwartz inequality, we obtain

|
∫

U
(|h(z)|2 + |g(z)|2)Re (h(z)g(z)) dσ|

≤ |
∫

U
(|h(z)|2 + |g(z)|2)2 dσ|1/2|

∫
U

(Re (h(z)g(z))2 dσ|1/2

= (
∫

U
(|h(z)|2 + |g(z)|2)2 dσ)1/2(

∫
U

1
2
|h(z)|2|g(z)|2 dσ)1/2

≤ (
∫

U
(|h(z)|2 + |g(z)|2)2 dσ)1/2(

∫
U

1
8

(|h(z)|2 + |g(z)|2)2 dσ)1/2

=
√

2
4

∫
U

(|h(z)|2 + |g(z)|2)2 dσ

=
√

2
4

(‖h‖4H4 + 2‖hg‖2H2 + ‖g‖4H4).

(3.6)

Furthermore, by Lemma 2.2,

(3.7)
∫

U
Re (h2(z)g2(z)) dσ = 0.

Finally, the relations (3.1)–(3.7), immediately give

‖f‖4b4 ≤ (1 +
√

2)(||g||4H2 + ||h||4H2) + 2(2 +
√

2)||g||2H2 ||h||2H2

≤ 3 + 2
√

2
2

(||g||4H2 + 2||g||2H2 ||h||2H2 + ||h||4H2)

=
3 + 2

√
2

2
‖f‖4h2 .

The equality in the last inequality of (3.6) is attained if and only if g = h
almost everywhere on U. Thus if the equality in (1.5) is attained, then must
be g = h. Further, the equality in (2.4) is attained if and only if g2 ≡ 0 on
U. This means that we have strict inequality in (1.5).

�
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