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ABSTRACT. Let h? be the harmonic Hardy space and b* be the harmonic
Bergman space of harmonic functions on the open unit disk U. Then for
any function f in h? we prove the following isoperimetric type inequality

1t < {22520 e,

where || - ||y4 and || - ||,z are norms in the spaces b* and h?, respectively.

1. INTRODUCTION

Throughout the paper we let U= {z € C: |z| < 1} be the open unit disk
in the complex plane C, and let T = {z € C: |z| = 1} be the unit circle in
C. The normalized area measure on U will be denoted by do. In terms of
real (rectangular and polar) coordinates, we have

do = 1dnltdy = lmlrd@, z=x+iy=re”.
T T
Further, dt/2m denotes the normalized Lebesgue measure on T.
For 1 < p < +oo let LP(U,o) = LP denote the familiar Lebesgue space
on U with respect to the measure o. For such a p, the Bergman space AP is

the space of all holomorphic functions on U such that

(1) |mb:(4u@pwfm<+w

We denote by Af the set of all functions f € AP for which f(0) = 0. Recall
that the harmonic Bergman space bP is the space of all (complex) harmonic
functions f on the disk U such that the integral in (1.1) is finite.

The harmonic Hardy space h? is defined as the space of (complex) har-
monic functions f on U such that

27 1/p
(1.2) I fllne :== sup (/0 |f (re)|P ;ljr) < 00.

0<r<1
If f € h? then by [1, Theorem 6.13] the radial limit

F(e™) = lim f(re®)
T —
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exists for almost every e in T and the boundary function f(e’) is integrable
on T. It is well known that

2m ) dt 2m ) dt
N A Ly T

The Hardy space HP consists of all holomorphic functions f € hP. For
more information on Bergman and Hardy spaces, see the book [5].

The starting point of this paper is the well known isoperimetric inequality
for Jordan domains and isoperimetric inequality for minimal surfaces due to
Carleman [3]. Among the other results, Carleman in [3] proved that if u is
a harmonic and smooth function on the closed disk U : |z| < 1, then

1 2 2
/ e dedy < — ( / e dt> .
U 4m \Jo

By using a similar approach as Carleman, Strebel in [7] proved that if f is
in H' then

(13) Avw?mws;(AUMWﬁf

with ”=" instead of ”<” if and only if

f(z) =

1—az’

a

where |a| < 1, a € C. This inequality has been proved independently by
Mateljevi¢ and Pavlovié in [6].

It is useful to observe that for our purposes the inequality (1.3) may be
written in terms of the A2 and H' norms as

(1.4) 1fllaz < 1 flles  fe H

Further, Burbea [2] generalized the inequality (1.3) as

— 2m ) n
2 [ st asay < (- [T irenrar)

where n > 2 is a positive integer and f € HP for some 0 < p < +o0.
Recently, Hang, Wang and Yang [4] extended the above type inequality for
harmonic functions defined on the unit ball of R® with n > 3.

Although we are unable to establish the harmonic version of the inequality
(1.3), in this paper we prove its h>-analogue as follows.

Theorem 1.1 (The main result). Suppose f is a nonzero function in the
space h?. Then

(15) [t anty < 222 ([ igepear)
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Remark 1.2. Note that by (1.5), it follows that h? C b*. Further, in terms
of the b* and h? norms of the function f € h2, the inequality (1.5) can be
written in the form

[ fllpr <

with the estimate 1/ (3 4+ 2v/2)/2 ~ 1.306563.

Remark 1.3. The question arises can we replace in (1.5) | f(z)|* and | f(e®)
by |f(2)[* and |f(e)[P, respectively, for some p > 0. It can be shown that
for p > 1 there holds an isoperimetric type inequality, but for p = 1 the
answer is negative (see Example 1.4 below). Furthermore, it remains an
open question whether the inequality (1.5) is sharp. The function from Ex-
ample 1.5 shows that the best constant in (1.5) is greater than or equal to
5/8m.

Example 1.4. Let for |a| < 1

‘ 2

~1—lalz)?
falz) = 11— za|?
Then
JARCIRIEES
U
and

/ | fu(e®)|dt = 2.
T
Example 1.5. Let for |a| < 1

fa(z) = Re

1—az
Then for a — 1—

. .3+2\/§< it2>2_> 5
/U|fa(z)| dxdy : <87r /T\fa(e )|“dt 73+2\/§~().857864.

2. PRELIMINARIES
In order to prove Theorem 1.1, we will need some auxiliary results.

Lemma 2.1. For any complex number z there holds
2
(2.1) zRe (2)] = \2f|z| 22 + Re (22).

Proof. An easy calculation shows that
122 + |2%| = V2|2]V/]2[2 + Re (22).

Now (2.1) follows from the previous identity and the identity |22 + |z|?| =
2|zRe (2)]. O
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Lemma 2.2. Let h be a function in A}. Then

(2.2) /U h(2) do = /U h(2) do = /U Re (h(2)) do = 0.

Proof. Since h(0) = 0, we can write h(z) = > " anz". Therefore, the first
two equalities in (2. 2) immediately follow from the fact that foﬂ ntdqt =0

for each n = +1+2,---. From this and the identity 2Re (h(z)) = h(z)+h(2)
it follows that [ Re(h(z)) do = 0. O

Lemma 2.3. If h is a function in the space A3, then

(2.3) /U|h(z)|2dcr:2/U|Re(h(z))|2da.

Proof. Since
= L) + 1) () + 1(2)

Re(h()* = ;
1 - 1 1
= QRGP+ 1) + FA(E) = SIh(:) + SRe (h3(2))

by integrating this and applying the fact that by Lemma 2.2, [i; Re (h*(2)) do =
0, we obtain (2.3). O

Lemma 2.4. Let h be a function in the space A% that is not identically zero
on U. Then

(2.4) /yh )Re (h |da</|h )|? do.

Proof. By the identity (2.1) of Lemma 2.1, we have

(2.5) [h(2)Re (h(2))] = 7|h )IVIh(2)? + Re (h2(2)).

By applying Cauchy-Schwartz inequality and the fact that by Lemma 2.2,
JyRe (h?(2)) do = 0, we obtain

([ VRGP + Re (2() do)’

< [n@Pds ( [ 0+ Rer2)) do
= (/U|h(z)\2da>2+ (/Uyh(z)|2da> (/URe(hZ(z))da>
_ (/U|h(z)\2do>2

The above inequality and (2.5) immediately yield the desired inequality (2.4)
with < instead of <. In order to show the strong inequality, we first observe
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that the equality in the previously applied Cauchy-Schwartz inequality holds
if and only if

(2.6) |h2(2)| = M\/|h(2)[? + Re (h2(2))

for almost every z € U and a nonnegative constant A. If A = 0 then obvi-
ously, we have h = 0 on U. If A > 0 then (2.6) implies that Re (h?(z)) =
1= /\2 |h?(z)| for almost every z € U. Therefore, by the continuity of the func-
tlons h? and Re (h?) on the disk U, it follows that Re (h?(z)) = 13- )‘2 |h%(2)]
for each z € U. The last equality yields

Alh?(z)| = 4|1 (2)* = 0

and hence

Re (h%(2)) = 0.
Thus, the function A is constant on U. Since h(0) = 0, we obtain h = 0 on
U. This contradiction completes the proof. O

3. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1. For simplicity, in this proof we shall often write A
instead of h(z). Since the unit disk is simply connected, we have the repre-
sentation f = ¢ + h, where g and h are holomorphic functions on the unit
disk U such that h(0) = 0. Direct calculations yield

(3.1)  [f[* = lgl* + [AI* + 4lgP|h* + 4(|g[* + |h[*)Re(hg) + 2Re((hg)?).

Suppose g(z) = > o2 anz™ and h(z) = > 7, byz" be the Taylor expansions
on U of functions g and h, respectively. Since f € h?, we have

2
4 _ it zdt>2: - e b |2
191 = (L1 5 (;zoj\an\ +3) n|>

(3.2) | e
- ( Llatep 2+ [ ey jfr)
= (lglZ + 222>

Thus the functions A and g belong to the Hardy space H? and according
to (1.5), g and h are also in A*. From this and the identity gh = ((g+h)? —
(g — h)?)/4 we see that gh is in A3. Therefore, the all terms on the right of
(3.1) are integrable on U. Therefore, we have f € b*, or equivalently

1L = /U ()| do < +oo.

By applying the inequality (1.4) to the functions g2, h? € H', we imme-
diately obtain

(3.3) /U () do = 19212 < 16211,
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(3.4) /U h(z)[ o = |22 < (122,

Since gh € A2, Cauchy-Schwartz inequality together with inequalities (3.3)
and (3.4) yields

22 220' z g - z g
/U|g< ) Ph(2)[ d s\//Um )i \//Um( )t

(3.5) = [19]1a2 - [1h*[| a2
< [lg* Il - B2
= llgllZ - 1AI1Z>-

By using the facts that h(0)g(0) = 0, gh € A%, Lemma 2.3 to the holo-
morphic function gh, and Cauchy-Schwartz inequality, we obtain

[ (B + o) Re (1(2)9(:)) ol

<1 [ ()P + 9P ol [ (Re (hz)g(2)? do

= (| (P + 1)) do) 2 | ;h(zn 9(2)]? do)?

< (| (R +19:) 2 d0) 2 | SR + lo2) )2 dor) 2

=32 [y + gty do
\/5

= Y21l + 2lg e + gl

(3.6)

Furthermore, by Lemma 2.2,

(3.7) / Re (h?(2)g?(2)) do = 0.
U
Finally, the relations (3.1)—(3.7), immediately give

1£15e < (L +V2)([lgll 2 + [1PI[52) + 22 + V2|32 |22
_3+2V2
=2
B 3+2f

5 (llgllt2 + 2llglzz2l Al 72 + Rl 32)

Il

The equality in the last inequality of (3.6) is attained if and only if g = h
almost everywhere on U. Thus if the equality in (1.5) is attained, then must
be g = h. Further, the equality in (2.4) is attained if and only if g?> = 0 on
U. This means that we have strict inequality in (1.5).

O
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