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We prove a theorem for harmonic diffeomorphisms between the unit disc and a convex Jordan domain, which
is a generalization of Heinz theorem [E. Heinz (1959). On one-to-one harmonic mappings. Pacific J. Math., 9,
101-105] for harmonic diffeomorphisms of the unit disc onto itself. We give a number of corollaries of the
theorem we prove.
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1. INTRODUCTION AND AUXILIARY RESULTS

A complex valued function w =u+iv, defined in a domain  C C, is called a
harmonic function if # and v are real valued harmonic functions. If Q is simply-
connected, then there are analytic functions g and % defined on Q such that w has
the representation

o0 o0
w=g+h= Zanz" + anZ".
n=0 n=0

If w is a harmonic univalent function, then by Lewy’s Theorem [10], w has a
non-vanishing Jacobian and consequently, according to the inverse mapping theorem,
w is a diffeomorphism.

Let w be a sense preserving harmonic diffeomorphism. Then the function

h'(2)
g'(2)

a(z) =
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is called the dilatation of the harmonic function w. Observe that «a is an analytic func-
tion satisfying the inequality |a(z)| < 1. If there exists k < 1 such that |a(z)| < k on £,
then we say that w is a quasiconformal function. We denote by QCH the family of
harmonic quasiconformal functions.

In this article we will study the function

D(w)(2) = w=(2)]* + |w=(2)| .

This function is square of the norm of the first differential, and it coincides with
the square of the modulus of the complex derivative if the function w is analytic.
Heinz [8] proved that if w is a harmonic diffeomorphism of the unit disk onto itself
satisfying the condition w(0) = 0 then:

1
D(W) > F .

We shall generalize the result of Heinz under the assumption that the domain of w is
the unit disk and the range of w is an arbitrary convex domain.
Let

1_’,2

P — =
8 =) = T —2reos@—g) 1 77)

denote the Poisson kernel. Then every bounded harmonic function w defined in the unit
disc has the representation

2w
w(z) = P[gl(z) = /0 P(r,0 — p)g(e”) o, (1.1

where g is a bounded integrable function defined on the unit circle.

Throughout this article 2 denotes a convex domain containing 0, and y denotes its
boundary. Next U denotes the unit disc and S' denotes the unit circle. We now state a
well-known theorem which plays an important role in the sequel.

ProrosiTion 1.1 (Choquet—Rado—Kneser) [4] Let y be a convex Jordan curve in C. Let
g be a homeomorphism from the unit circle S' onto the convex Jordan curve y. Then the
function w(z) = P[gl(z) is a harmonic diffeomorphism of the unit disc U onto the Jordan
domain inty.

Let y = 092 be a smooth convex Jordan curve in C such that 0 € 2. We will establish
some properties of y. Let ¢ — r(p)e'? be the polar parametrization of y. The tangent 7,
at ¢ = r(p)e'? is defined by

y =r(@)e'? + (r'(9) + ir())e'*(x — r(p)e’?).
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The angle o, between ¢ and the positive oriented tangent at ¢ is defined by

(r(@)e'®, (r'(9) + ir(g))e'?) _ r'()

MoV @) +r e e+

cosa, =

(1.2)

Hence

()
)+

sinq, =

Consequently

cotoy, = rr . (1.3)

Let d, = dist(¢,, 0) be the distance of ¢, from the origin. Then
d, = (@) sina,. (1.4)
Let n, be the normal line to the line #, that passes through the origin. Since y is a convex

curve, it follows that y lies to the left of the positive oriented tangent. Hence n, cuts y at
some point p(B,) exp(iB,) that lies between ¢, and the origin. Thus, we have

(@) = dy > 1(By). (1.5)
Let ¢, be defined by

p, = dist(y, 0) = ‘?é? |z = r(gy).

Then by (1.5) it follows that B, = ¢,. Thus, we deduce the following theorem.

THEOREM 1.2 Let y = 02 be a convex Jordan curve in C such that 0 € Q. Let ¢ —
r@)e'? be the polar parametrization of the convex curve y. Let d, = dist(t,,0) be the
distance of t, from the origin. Then there is ¢, € [0,2m) such that

dy = dy, = r(py) = dist(y, 0) (1.6)

for all ¢ €0, 2m).

Let g: S! — y be a continuous locally injective function from the unit circle S' onto
the convex Jordan curve y. Then

F(p) = p(@)e” @ = g(e'?), ¢ €l0,27)

is a parametrization of y which represents g. If g is a orientation preserving then f
obviously is monotone increasing. Suppose that F is differentiable. Let ¢ — r(p)e'?
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be the polar parametrization of y. Since r(f(¢)) = p(¢), we deduce that p'(p) =
r'(f(¢) - f'(¢). Hence

g p'(¢)
(f (o) ) (1.7)
The following lemma gives an important property of convex curves.
LemmMmA 1.3 Let y be a convex Jordan curve in C. Let
[0,27) 5 ¢ — F(g) = p(p)e’ ¥ ey
be a locally injective differentiable parametrization of y. Then
K(x,9) = p*(9) '(9) = p'(@)p(x) sin(f () — f (x))
— pp)p(x)f "(p)cos(f (9) —f (x)) = 0 (1.8)

for all ¢, x € [0,2m).

Proof Let ¢ = p(p)e’ @ and let y = p(x)e’ . Now, let n; be the outer normal of the
curve y at ¢. Since the function f is monotone increasing, it follows that

n; = —i-5(9) = =i (p'(9) + ip()f "(9))e" V.
Since y is convex, it follows that
<§ -V n{) Z 0

Then the inequality of the lemma ecasily follows. |

The inequality (1.8) will be used in the proof of our main theorem (see Theorem 2.2).

2. THE MAIN RESULTS
Throughout this section, we will use the notations
wo(e'?) ;== limw.(re’?) and wz(e'?) := lim w=(re'%)
r—1 r—1
if the limits exist.
LeEmMA 2.1 Let w = u + iv be a differentiable function defined in a domain Q C C. Then:

1
|2 = ;(urvgo - u(pvr)a

Ju(re'¥) = UpVy — UpVy = W] 2 qws
and

2 2
|| |W¢7|

D(w) = [w,|> + |w=|?> = .
(W) = [w:] "+ [we] > 22
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Proof From

wr=e"%w.+ePw: and w, =ir(e'’w, —e "Pwsz),

we have

i W ; W,

W, =e “"(w,, - z—‘o) and ws = e""(w,- + l—¢>.
r r
Hence,
2 2 1
w:|" = wz|" = ;(urvw — UyVr),

and

2 2
pwrl® Iyl

2 2
w T+ ws|” = .
ol 4 w2 =+ 58

We are now ready to state the main result of this article.

THEOREM 2.2 Let y = 3 be a convex Jordan curve in C such that 0 € Q. Letg: S' — y
be a C?* homeomorphism of the unit circle onto y. Let w(z) = P[gl(z) and let w(0) = 0.

If F(p) = p(p)e’ @) = g(e'?), then

IF'(p)* 1
o p?

’IE’)I} D(w)(re'?) > > 3 (2.1)
for all ¢ €]0,2m) and
D) = 2.2)
for all z € U. Here p, denotes min.¢, |z|.
Proof Because of Lemma 2.1, we have
D(w) = % (uf vl 4 Uy ; v“%). 2.3)

On the other hand, the assumption F € C? implies that w, and w, have continuous
extensions to the boundary. (See [6,9].)
Hence, the following limit relations hold:

lim uy(re'?) = uy(e') = p'(p) cosf (¢) = p(p)f '(¢) sinf (). 24
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lim v, (re'?) = vy(e'?) = p'(p)sinf (¢) + p(p)f (¢) cosf (). (2.5)

u(re'?) — u(e'?)

llm u(pe'?) = lim (2.6)
r—1 r—1
. ol 9) ip
lim v,(pe'*) = 119%1”6). @.7)
p—> r— —

By exploiting the representation (1.1), (2.3)~(2.7) and Fubini’s theorem, we have:

2
lim D(w)(re'?) = —hm<u +v2 4 ‘”;Lv)
=10’ (‘P)+P2(<P)f/2(§0))+1limH1(u +12)

2 2
Liina / / [o(¢) cos  (¢) — plx) cosf ()]

2 r—1
[0 () ) cos (N7 LI gy

1 2n p2n
+3lim [ [T igrsing (@)= pwysing o)

P(r,x—@)P(r,y — )
(1-r)?

2n p2m
=L+~ hm/ f [o(p) — p(x) cos(f (¢) — f (x))]

x [p(e) — p(p)cos(f (@) — f ()] Pl x (lgoi]i()rzy ? g dy

2r  p2mw
+ i f / P sin(f (@) — £ (1)
P(r,x — o)P(r,y — ¢)

x [p(@)sinf (p) — p(y)sinf ()] dxdy

x p(y)sin(f (@) =1 (1)) 1_n? dx dy
2 2
= Lt tim( [ o) - socostr ) = £ o0 T )
r—1 0 r

2
#x(im [ om0 -0 "D )

= L+1lim,1((a+ pb)*> +b?),
where

p'(@)p(x )
p(@)f (¢ )

2
- / (p«a) p(x)cos(f () —f (x)) 2
0

o=
1—r

in(f (¢) —f (X)))
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o' (p) Llo1iN2 2 Npr2
= N~ L:_ >
Zore L' (0)* + p*(@)f " (9))
and
27T P — )
b= [ ssints @) -1 605 ar
0
Then we have
(a+ Bb)* +b% =a*+ B*b* + 2Bab + b*
5 ) 2 2Bab
=a’+ (B +1)<b +1+ﬂ2)
2 2.2
5 Ba 2 _ B-a
—a +<b+1+,32> (B> +1) o
- a+ (b+-L1 2(;32+1)
_1+/32 1+,32

2 I 2 K(x.9) P(r,g—x) >2
f— d .
1182 1+ﬂ2</0 oo @ 1-r &

Here K(x,¢) denotes the function defined in (1.8). K is positive because the range

Q =inty is convex. Consequently, the integrand in the last integral is positive.
On the other hand

P(raw_x)>L
l—r “ 41

Since w(0) = 0, we have

a? 1 2T K(x, @) dx : 1 2 dx 2_ 1 p3e)
1+ﬁ221+ﬂ2<fo p(w)f/(w)‘lﬂ) 21+52(/0 p“")4n> TTp 4

Consequently,

1 P*(9) _
81+ (o' (@/f (@)p(p)*

: i 1 l l
lim D(w)(re) = 5(0"*(¢) + p7(@) () +
Since the function ¢ — F(gp) is differentiable, Egs. (1.3) and (1.7) imply that

p'@ .,
1 (@p(p) = ot

where ay(,) has been defined in (1.2).
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Then by Theorem 1.2 and (1.4), it follows that

o IF' (@) p*(9)
D(w)(e™
(n)(e )Z 2 8(1 +C0t20lf((p))
CF @I | rA(f(@)sincar)  IF(@)? 1,
=7 7 g =T tghr

Thus we have proved (2.1). We now turn to the proof of (2.2). Since
0 ) . /
%w(z) =izw.(z) —i Zw(z) = P[F'](2),

it follows that |F/(¢)|> = (jw-(¢'?)| — |w =(¢'#)])>. Then by inequality (2.1), we obtain
[w-(”)]? + [w=(e”)]* + 2[w-(e?)w =(e?)| = f 2.
Hence
[w=(e9)] + Iw=(e?)| = 5 py-

Since g is a homeomorphism, Proposition 1.1, implies that w is a univalent harmonic
function. According to Lewy’s theorem, we conclude that the Jacobian of the harmonic
function w is positive on the unit disc. Consequently

wo(e')] > L p,.
Since the analytic function w. is non-vanishing on U, we have
w:(re')| = 10y,
by the minimum principle. Finally, we deduce that
D(W)(2) = 1+ 02,
for every z € U and thus the proof is complete. |

Remark 2.3 1In the proof of the first inequality of Theorem 2.2 we have used the fact
that F is a differentiable parametrization of the Jordan curve y satisfying condition

K(x,9) = p*()f () — %(p(w)p(X) sin(f (¢) — f (x))) = 0.
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We note that the last inequality holds by virtue of local injectivity of F. Thus by follow-
ing the proof of Theorem 2.2, we may deduce the following theorem.

THEOREM 2.4 Let y =0Q be a convex Jordan curve in C such that 0 € Q. Let
F(p) = p(@)e” @ be a C? locally injective function from [0,2m) onto y. Next, let
w = P[F]|(z) be the Poisson integral of the function F. Then:

oy 13 ig /((p)|2 2
D(w)(e'?) = hrrll D(w)(re )> g ,
where p, = min.¢, |z|.

We note that in Theorem 2.4, w is not necessarily univalent.

The question arises whether the main theorem holds for an arbitrary harmonic
diffeomorphism. The answer to this question is positive. Indeed, the next theorem
holds.

THEOREM 2.5 Let Q be a convex domain in C containing the origin. Let w: U — Q be a
harmonic diffeomorphism of the unit disc onto Q. If w(0) = 0, then

D(w)(2) = £ p? (2.8)

where y = 30Q2, p, = min.¢, |z|.

Proof Let h: U — Q be the Riemann mapping; i.e., the conformal mapping of the
unit disc onto the convex domain € such that 4(0) =0 and 4'(0) > 0. Since Q is

convex we have
zh’(z)
ke(i) =

zh!(z)  zrh"(zr)
h(z)  h'(zr) ’

Next, let 4,(z) = h(rz). Then

Hence

Re <zh " (2)) Y
h,(2)
Thus, we conclude that 4(rS') is a convex analytic curve on  for every r € (0, 1). Let
A, = h((n/n+ 1)U), and D, = w~'(A,). Let g, be a Riemann mapping from the unit
disc onto D, (we may suppose that 0 € D, for large enough n). Let w, =wog,.

Then w, is a harmonic diffeomorphism from the unit disc onto the convex Jordan
domain A,. Let y, = 0A,. By applying Theorem 2.2, we conclude

D(wa)(2) = 155, (2.9)
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because w and g,,n € N have C* differentiable extensions to the boundary (see for
example [3]).

By applying the theorem on normal families of analytic functions, we see that there
exists a subsequence (g, ) of the sequence (g,) which converges uniformly on every
compact set to an analytic function g such that g(0) = 0. Since

1
{w: lw| <1 ——} C Dy, C{w:w| < 1}
N
Schwarz’s lemma implies that

1
<1 —n_>|z| <lgn ()| < |z|.

k

Consequently, g is an analytic univalent function from the unit disc onto itself satisfying
the conditions g(0) = 0 and g’(0) > 0. Therefore, g = Id. Consequently, the sequence
g, converges uniformly to the function g'(z) = 1 on every compact set. On the other
hand, the sequence p,, converges to p,. By the inequality (2.9) and by the equality

D(Wnk) = |g:1k(z)| ZD(M} o gﬂk)a
we obtain

D(w)(z) = lim Dw,)(2) = fgpy

for every z: |z| < 1. |

Remark 2.6 The conditions w(0) = 0 and 0 € int y can be omitted. Indeed, by setting
wi(z) = w(z) — w(0), the problem is reduced to the previous case.

We now estimate the function D(w) under the assumption that w is a harmonic
quasiconformal mapping. We do so by means of the following.

COROLLARY 2.7 Let Q be a convex domain containing the origin. Let w be a harmonic
k-quasiconformal function from the unit disc U onto 2, such that w(0) = 0. Then

1 2
D(w)(z) = 4(1+2—k+kz),0y’ (2.10)

where p, is the distance of y = 9Q from the origin.
Proof  We divide the proof in two steps.

Step 1 Assume that w = P[F ], where F'is a twice continuously differentiable function.
Then by Theorem 2.5, we have

|F'(¢)|?

e = O L2
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The function
aiw(Z) = i(zw.(z) — Zwz(2)) = P[F'I(2), (z=re'?),
(2

has a continuous extension to the boundary. Hence, we have:

2
> (Jw-(e'9)] — Iw=(e")])*.

d
|F'(¢)|> = lim ‘ —w(2)
r—1 8§0

As in the proof of Theorem 2.2, we obtain |w.(e'?)| + |wz(e'?)| > (1/2)p,. Since w is
k-quasiconformal, we also have

. ,» 1
}f{ lw-(re'?)| > mﬂy-

Since w, is a non-vanishing analytic function we deduce that

1
= 2 3 P (2.11)

forallze U.

Step 2 Let w be an arbitrary k-quasiconformal harmonic mapping from the
unit disc onto the domain Q. Then as in the proof of Theorem 2.5, we construct
the sequence {w,} of harmonic diffeomorphisms, which have twice continuously
differentiable extensions to the boundary and which are k-quasiconformal mappings.
The functions w, are k-quasiconformal because w is k-quasiconformal mapping.
Thus, the sequence {w,} converges uniformly to the function w on every compact
set, and the sequence p,, tends to p,. On the other hand, the sequence of the
analytic functions w,, converges uniformly to w, on every compact set. Hence the
inequality (2.11) holds for an arbitrary k-quasiconformal harmonic mapping w.
From inequality (2.11) it follows that

1 2
D& = gk iy P

which yields the conclusion. |
Observe that in the case of the unit disk, the last inequality of the previous proof has
the form

1

bnN& = g2k iy

This inequality is better than the inequality of Heinz if k is close to 0.
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COROLLARY 2.8 Let Q be a convex domain in C containing the origin. Let w be a
conformal mapping of the unit disc onto Q such that w(0) = 0. Then for all z € U, we have

W@ > /2 (2.12)

where p, is the distance of y = 0Q from the origin.
The following statement is an immediate corollary of the previous statement.

COROLLARY 2.9 Let Q be a convex domain in C containing the origin. Let w be a
conformal mapping of Q2 onto the unit disc U such that w(0) = 0. Then

w2l < 2/py,

where p, is defined above.
The following statement follows at once from Theorem 2.5.

COROLLARY 2.10 Let
- o0 o0
w=h(z)+g(z) = Z az" + Z b,z"
n=1 n=1

be a harmonic diffeomorphism of the unit disc onto a convex domain Q C C. Then
lai]® + 11| > £ 02, (2.13)

where p = dist(9%2, 0).
The following example shows that the condition of convexity is important.

Example 2.11 The function w(z) = (z+ 1)> — 1 is a conformal mapping between the
unit disc and the Jordan domain w(U) which is not convex, and which satisfies
w’(—1) = 0. Hence, the inequality (2.12) does not hold for non-convex domains.

The next example shows that the inequality (2.12) is sharp.

Example 2.12 Let n € N. Then the function w, defined by

(m+1Dz+n n
n+14+nz n+1

Wn(z) =
is a conformal mapping between the unit disc U and the disc
n .
U,=U—-——=inty,
n n+1 m yl

and satisfies the conditions

1 1
n = d / 1 = — > — = —
w0 =0 and w, (D=2 "5 2 2m =305
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Moreover, the mapping w(z) = lim,— oo (7 + 1)w,(z) = 2z/1 + z is a conformal mapping
of the unit disk onto the half-plane x < 1 with w'(1) = 1/2. Thus the constant 1/2 in
(2.12) is the best possible.
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