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Abstract. Let QC(K, g) be a family of K quasiconformal mappings of the

open unit disk onto itself satisfying the PDE ∆w = g, g ∈ C(U), w(0) = 0.

It is proved that QC(K, g) is a uniformly Lipschitz family. Moreover, if |g|∞
is small enough, then the family is uniformly bi-Lipschitz. The estimations

are asymptotically sharp as K → 1 and |g|∞ → 0, so w ∈ QC(K, g) behaves

almost like a rotation for sufficiently small K and |g|∞.

1. Introduction and statement of the main result

In this paper U denotes the open unit disk in C, and S1 denotes the unit circle.
Also, by D and Ω we denote open regions in C. For a complex number z = x+ iy,
its norm is given by |z| =

√
x2 + y2. For a real 2× 2 matrix

A =
(
a11 a12

a21 a22

)
,

we will consider the matrix norm |A| = sup{|Az| : |z| = 1} and the matrix function
l(A) = inf{|Az| : |z| = 1}.

A real-valued function u, defined in an open subset D of the complex plane C,
is harmonic if it satisfies Laplace’s equation:

∆u(z) :=
∂2u

∂x2
(z) +

∂2u

∂y2
(z) = 0 (z = x+ iy).

A complex-valued function w = u + iv is harmonic if both u and v are real
harmonic.

We say that a function u : D → R is ACL (absolutely continuous on lines) in
the region D, if for every closed rectangle R ⊂ D with sides parallel to the x and
y-axes, u is absolutely continuous on a.e. horizontal and a.e. vertical line in R.
Such a function has of course, partial derivatives ux, ux a.e. in D.

The definition carries over to complex valued functions.

Definition 1.1. A homeomorphism w : D → Ω, between open regions D,G ⊂ C,
is K−quasiconformal (K ≥ 1) (abbreviated K − q.c.) if

(1) w is ACL in D,
(2) |wz̄| ≤ k|wz| a.e. (k = K−1

K+1 ).
Here

wz :=
1
2

(wx − iwy) and wz̄ :=
1
2

(wx + iwy)
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are complex partial derivatives (cf. [1], pp. 3, 23–24).

If by ∇w(z) we denote the formal derivative of w = u+ iv at z:

∇w =
(
ux uy
vx vy

)
,

then the condition (2) of Definition 1.1 can be written as

(1.1) K−1(|∇w|)2 ≤ Jw ≤ K(l(∇w))2 a.e. on D,

where Jw = det(∇u) is the Jacobian of w. The above fact follows from the following
well-known formulae

Jw(z) = |wz|2 − |wz̄|2, |∇w| = |wz|+ |wz̄|, l(∇w) = ||wz| − |wz̄||.
Notice that if w is K−quasiconformal, then w−1 is K−quasiconformal as well

(this follows from (1.1)).
Let P be the Poisson kernel, i.e. the function

P (z, eiθ) =
1− |z|2

|z − eiθ|2
,

and let G be the Green function of the unit disk, i.e. the function

(1.2) G(z, ω) =
1

2π
log
∣∣∣∣1− zωz − ω

∣∣∣∣ z, ω ∈ U, z 6= ω.

The functions z 7→ P (z, eiθ), z ∈ U, and z 7→ G(z, ω), z ∈ U \ {ω} are harmonic.
Let f : S1 → C be a bounded integrable function on the unit circle S1 and let

g : U → C be continuous. The solution of the equation ∆w = g in the unit disk
satisfying the boundary condition w|S1 = f ∈ L1(S1) is given by

(1.3)
w(z) = P [f ](z)−G[g](z)

:=
1

2π

∫ 2π

0

P (z, eiϕ)f(eiϕ)dϕ−
∫

U
G(z, ω)g(ω) dm(ω),

|z| < 1, where dm(ω) denotes the Lebesgue measure in the plane. It is well known
that if f and g are continuous in S1 and in U respectively, then the mapping
w = P [f ]−G[g] has a continuous extension w̃ to the boundary, and w̃ = f on S1.
See [9, pp. 118–120].

We will consider those solutions of the PDE ∆w = g that are quasiconformal as
well and will investigate their Lipschitz character.

Recall that a mapping w : D → Ω is said to be C−Lipschitz (C > 0) (c−co-
Lipschitz (c > 0)) if

(1.4) |w(z1)− w(z2)| ≤ C|z1 − z2|, z1, z2 ∈ D,

(1.5) (c|z1 − z2| ≤ |w(z1)− w(z2)|, z1, z2 ∈ D).

A mapping w is bi-Lipschitz if it is Lipschitz and co-Lipschitz.
O. Martio [17] was the first who considered harmonic quasiconformal mappings

on the complex plane. Recent papers [10], [12], [14], [21] and [13] bring much
light on the topic of quasiconformal harmonic mappings on the plane. See also
[11] for the extension of the problem on the space. In [16] it was established the
Lipschitz character of q.c. harmonic self-mappings of the unit disk with respect to
hyperbolic metric and it was generalized to the arbitrary domain in [18]. See [27],
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[28], [26], [30] for additional results concerning the Lipschitz character of harmonic
quasiconformal mappings w.r.t the hyperbolic metric.

The following theorem is a generalization of an analogous theorem for the unit
disk due to Pavlović [21] and of an asymptotically sharp version of Pavlović theorem
due to Partyka and Sakan [20] in the case of harmonic quasiconformal mappings.

The following fact is the main result of the paper.

Theorem 1.2. Let K ≥ 1 be arbitrary and let g ∈ C(U) and |g|∞ := supw∈U |g(w)|.
Then there exist constants N(K) and M(K) with limK→1M(K) = 1 such that :
If w is a K-quasiconformal self-mapping of the unit disk U satisfying the PDE
∆w = g, with w(0) = 0, then for z1, z2 ∈ U:(

1
M(K)

− 7|g|∞
6

)
|z1 − z2| ≤ |w(z1)− w(z2)| ≤ (M(K) +N(K)|g|∞) |z1 − z2|.

The proof of Theorem 1.2, given in Section 3, depends on the following two
propositions:

Proposition 1.3. [13] Let w be a quasiconformal C2 diffeomorphism from a bounded
plane domain D with C1,α boundary onto a bounded plane domain Ω with C2,α

boundary. If there exist constants a and b such that

(1.6) |∆w| ≤ a|∇w|2 + b , z ∈ D,

then w has bounded partial derivatives in D. In particular it is a Lipschitz mapping
in D.

Proposition 1.4 (Mori’s Theorem). [5, 22, 31] If w is a K-quasiconformal self-
mapping of the unit disk U with w(0) = 0, then there exists a constant M1(K),
satisfying the condition M1(K)→ 1 as K → 1, such that

(1.7) |w(z1)− w(z2)| ≤M1(K)|z1 − z2|K
−1
.

See also [2] and [19] for some constants that are not asymptotically sharp.
The mapping |z|−1+K−1

z shows that the exponent K−1 is optimal in the class
of arbitrary K-quasiconformal homeomorphisms.

2. Auxiliary results

In this section, we establish some lemmas needed in the proof of the main results.

Lemma 2.1. Let w be a harmonic function defined on the unit disk and assume
that its derivative v = ∇w is bounded on the unit disk (or equivalently, according
to Rademacher’s theorem [7], let w be Lipschitz continuous). Then there exists a
mapping A ∈ L∞(S1) defined on the unit circle S1 such that ∇w(z) = P [A](z) and
for almost every eiθ ∈ S1 the relation

(2.1) lim
r→1−

∇w(reiθ) = A(eiθ)

holds. Moreover the function f(eiθ) := w(eiθ) is differentiable almost everywhere
in [0, 2π] and the formula

A(eiθ) · (ieiθ) =
∂

∂θ
f(eiθ)

holds.
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Proof. For the proof of the first statement of the lemma, see, for example, [3,
Theorem 6.13 and Theorem 6.39].

Next, since

| ∂
∂θ
w(reiθ)| = |r∇w(reiθ)

∂

∂θ
eiθ| ≤ |r∇w(reiθ)| · | ∂

∂θ
eiθ|

≤ ess sup
θ
|A(eiθ)| · | ∂

∂θ
eiθ|,

the Lebesgue Dominated Convergence Theorem yields

f(eiθ) = lim
r→1

w(reiθ)

= lim
r→1−

∫ θ

θ0

∂

∂ϕ
w(reiϕ)dϕ+ f(eiθ0)

=
∫ θ

θ0
lim
r→1

∂

∂ϕ
w(reiϕ)dϕ+ f(eiθ0)

=
∫ θ

θ0
lim
r→1

r∇w(reiϕ)
∂

∂ϕ
eiϕdϕ+ f(eiθ0)

=
∫ θ

θ0
A(eiϕ) · ∂

∂ϕ
eiϕdϕ+ f(eiθ0).

Differentiating in θ we get
∂

∂θ
f(eiθ) = A(eiθ) · ∂

∂θ
eiθ = A(eiθ)(ieiθ)

almost everywhere in S1. �

Lemma 2.2. If f(eit) = eiψ(t), ψ(2π) = ψ(0)+2π, is a diffeomorphism of the unit
circle onto itself, then

(2.2) |f(eit)− f(eis)| ≤ |ψ′|∞|eit − eis|,
where |ψ′|∞ = max{ψ′(τ) : 0 ≤ τ ≤ 2π} = max{|∂τf(eiτ )| : 0 ≤ τ ≤ 2π}.

Proof. Take the function

h(t) =
|f(eit)− f(eis)|
|eit − eis|

.

Then we have

(2.3) h(t) =
sin ψ(t)−ψ(s)

2

sin t−s
2

.

In order to estimate the maximum of the function h, we found out that the sta-
tionary points of it satisfy the equation

(2.4) tan
ψ(t)− ψ(s)

2
= tan

t− s
2
· ψ′(t).

Substituting (2.4) to (2.3) we obtain
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(2.5) h2(t) =

(
1 + tan2 ψ(t)−ψ(s)

2

)
ψ′

2(t)

1 + tan2 ψ(t)−ψ(s)
2 ψ′2(t)

.

Now since

2π = ψ(2π)− ψ(0) =
∫ 2π

0

ψ′(τ)dτ,

it follows that |ψ′|∞ ≥ 1. If |ψ′(t)| ≤ 1 then from (2.5) it follows |h(t)| ≤ 1 ≤ |ψ′|∞.
If |ψ′(t)| > 1, then again employing (2.5) we obtain |h(t)| ≤ |ψ′|∞. This implies
the lemma. �

Lemma 2.3. If z ∈ U, and

I(z) =
1

2π

∫
U

1− |ω|2

|z − ω| · |1− z̄ω|
dm(ω) ,

then

(2.6)
1
2
≤ I(z) ≤ 2

3
.

Both inequalities are sharp. Moreover the function z 7→ I(z), is a radial function
and decreasing for |z| ∈ [0, 1].

Proof. For a fixed z, we introduce the change of variables
z − ω
1− z̄ω

= ξ,

or, what is the same,

ω =
z − ξ
1− z̄ξ

.

Then

I :=
1

2π

∫
U

1− |ω|2

|z − ω| · |1− z̄ω|
dm(ω)

=
1

2π

∫
U

1− |ω|2

|ξ| · |1− z̄ω|2
dm(ω)

=
1

2π

∫
U

1− |ω|2

|ξ| · |1− z̄ω|2
(1− |z|2)2

|1− z̄ξ|4
dm(ξ)

=
1

2π

∫
U

(1− |ξ|2)(1− |z|2)3

|ξ| · |1− z̄ξ|6 |1− z̄ω|2
dm(ξ).

Since

1− z̄ω = 1− z̄ z − ξ
1− z̄ξ

=
1− |z|2

1− z̄ξ
,
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we see that

I =
1

2π

∫
U

(1− |z|2)(1− |ξ|2)
|ξ| · |1− z̄ξ|4

dm(ξ).

In the polar coordinates, we have

I = (1− |z|2)
∫ 1

0

(1− ρ2) dρ
1

2π

∫ 2π

0

dt

|1− z̄ρeit|4
.

By Parseval’s formula (see [24, Theorem 10.22]), we get

1
2π

∫ 2π

0

dt

|1− z̄ρeit|4
=

1
2π

∫ 2π

0

dt

|(1− z̄ρeit)2|2

=
1

2π

∫ 2π

0

∣∣∣ ∞∑
n=0

(n+ 1)(z̄ρ)nenit
∣∣∣2 dt

=
∞∑
n=0

(n+ 1)2|z|2nρ2n,

whence

I = (1− |z|2)
∞∑
n=0

2(n+ 1)2

(2n+ 1)(2n+ 3)
|z|2n.

Now the desired inequality follows from the simple inequality

1
2
≤ cn :=

2(n+ 1)2

(2n+ 1)(2n+ 3)
≤ 2

3
(n = 0, 1, 2, . . .).

Setting |z|2 = r, and ϕ(r) = I(z), we obtain

ϕ′(r) =
∞∑
n=1

n(cn − cn−1)rn−1.

Since cn ≤ cn−1 it follows that ϕ is decreasing, as desired. �

We need the following well-known propositions.

Proposition 2.4. [25] Let X be an open subset of R, and Ω be a measure space.
Suppose that a function F : X × Ω→ R satisfies the following conditions:

(1) F (x, ω) is a measurable function of x and ω jointly, and is integrable over
ω, for almost all x ∈ X held fixed.

(2) For almost all ω ∈ Ω, F (x, ω) is an absolutely continuous function of x.
(This guarantees that ∂F (x, ω)/∂x exists almost everywhere).

(3) ∂F/∂x is ”locally integrable” – that is, for all compact intervals [a, b] con-
tained in X:

(2.7)
∫ b

a

∫
Ω

∣∣∣∣ ∂∂xF (x, ω)
∣∣∣∣ dω dx <∞ .

Then
∫

Ω
F (x, ω) dω is an absolutely continuous function of x, and for almost every

x ∈ X, its derivative exists and is given by
d

dx

∫
Ω

F (x, ω) dω =
∫

Ω

∂

∂x
F (x, ω) dω .
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The following proposition is well-known as well.

Proposition 2.5. [29, p. 24–26] Let ρ be a bounded (absolutely) integrable function
defined on a bounded domain Ω ⊂ C. Then the potential type integral

I(z) =
∫

Ω

ρ(ω) dm(ω)
|z − ω|

belongs to the space C(C).

Lemma 2.6. Let ρ be continuous on the closed unit disc U. Then the integral

J(z) =
1

2π

∫
U

log
∣∣∣∣1− zωz − ω

∣∣∣∣ ρ(ω) dm(ω)

belongs to the space C1(U). Moreover

∇J(z) =
1

2π

∫
U
∇ log

∣∣∣∣1− zωz − ω

∣∣∣∣ ρ(ω) dm(ω).

Proof. Straightforward calculations yield

(2.8) ∇z
1

2π
log
∣∣∣∣1− zωz − ω

∣∣∣∣ =
1

2π

(
1

ω − z
− ω̄

1− zω̄

)
,

and consequently

(2.9) |∇z
1

2π
log
∣∣∣∣1− zωz − ω

∣∣∣∣| = 1
2π

1− |ω|2

|z − ω||z̄ω − 1|
, z 6= ω.

(Here ∇zϕ(z, ω) denotes the gradient of the function ϕ treated as a function of z).
Let Ω = U, and let µ be the Lebesgue measure of U.

According to Lemma 2.3, condition (2.7) of Proposition 2.4 is satisfied. Applying
now Proposition 2.4, and relation (2.8) together with Proposition 2.5, we obtain
the desired conclusion. �

Lemma 2.7. If g is continuous on U, then the mapping G[g] has a bounded deriv-
ative, i.e. it is Lipschitz continuous and the inequalities

(2.10) |∂G[g]| ≤ 1
3
|g|∞,

and

(2.11) |∂̄G[g]| ≤ 1
3
|g|∞

hold on the unit disk. Moreover ∇G[g] has a continuous extension to the boundary,
and for eiθ ∈ S1 there hold

(2.12) ∂G[g](eiθ) = −−e
iθ

4π

∫
U

1− |ω|2

|eiθ − ω|2
g(ω) dm(ω),

and

(2.13) ∂̄G[g](eiθ) = −e
iθ

4π

∫
U

1− |ω|2

|eiθ − ω|2
g(ω) dm(ω).

Finally, for eiθ ∈ S1
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(2.14) |∂G[g]| ≤ 1
4
|g|∞,

and

(2.15) |∂̄G[g]| ≤ 1
4
|g|∞.

Proof. First of all for z 6= ω we have

Gz(z, ω) =
1

4π

(
1

ω − z
− ω̄

1− zω̄

)
=

1
4π

(1− |ω|2)
(z − ω)(zω̄ − 1)

,

and

Gz̄(z, ω) =
1

4π
(1− |ω|2)

(z̄ − ω̄)(z̄ω − 1)
.

By Lemma 2.6 the potential type integral

∂G[g](z) =
1

4π

∫
U

1− |ω|2

(z − ω)(zω̄ − 1)
g(ω) dm(ω),

exists and belongs to the space C(U).
According to Lemma 2.3 it follows that

|∂G[g]| ≤ 1
4π
|g|∞

∫
U

1− |ω|2

|z − ω||z̄ω − 1|
dm(ω),

and

|∂G[g]| ≤ 1
3
|g|∞.

The inequality (2.10) is proved. Similarly we establish (2.11).
According to Lemma 2.5 it follows

(2.16) ∂G[f ](z) =
∫

U
Gz(z, ω)g(ω) dm(ω).

Next we have

(2.17) lim
z→eiθ,z∈D

Gz(z, ω) = − 1
4π

e−iθ(1− |ω|2)
|eiθ − ω|2

and

(2.18) lim
z→eiθ,z∈D

Gz̄(z, ω) = − 1
4π

eiθ(1− |ω|2)
|eiθ − ω|2

.

In order to deduce (2.12) from the last two relations, we use the Vitali theorem
(see [6, Theorem 26.C]):

Let X be a measure space with finite measure µ, and let hn : X → C be a sequence
of functions that is uniformly integrable, i.e. such that for every ε > 0 there exists
δ > 0, independent of n, satisfying

µ(E) < δ =⇒
∫
E

|hn| dµ < ε. (†)
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Now: if limn→∞ hn(x) = h(x) a.e., then

lim
n→∞

∫
X

hn dµ =
∫
X

h dµ. (‡)

In particular, if

sup
n

∫
X

|hn|p dµ <∞, for some p > 1,

then (†) and (‡) hold.
Hence, to prove (2.12), it suffices to prove that

sup
z∈U

∫
U

(
1− |ω|2

|z − ω| · |1− z̄ω|
|g(ω)|

)p
dm(ω) <∞, for p = 3/2.

In order to prove this inequality, we proceed as in the case of Lemma 2.3. We
obtain

Ip,g(z) =
∫

U

(
1− |ω|2

|z − ω| · |1− z̄ω|
|g(ω)|

)p
dm(ω)

≤ |g|p∞
∫

U

(
1− |ω|2

|z − ω| · |1− z̄ω|

)p
dm(ω)

= |g|p∞
∫

U

(1− |z|2)2−p(1− |ω|2)p

|ξ|p |1− z̄ξ|4
dm(ξ)

≤ |g|3/2∞ (1− |z|2)1/2

∫ 1

0

ρ−1/2(1− ρ2)3/2 dρ

∫ 2π

0

|1− z̄ρeiϕ|−4 dϕ

≤ |g|3/2∞ (1− |z|2)1/2

∫ 1

0

ρ−1/2(1− ρ2)3/2(1− |z|ρ)−3 dρ.

Now the desired result follows from the elementary inequality∫ 1

0

ρ−1/2(1− ρ2)3/2(1− |z|ρ)−3 dρ ≤ C(1− |z|2)−1/2.

This proves (2.12). Similarly we prove (2.13). The inequalities (2.14) and (2.15)
follow from (2.12) and (2.13) and Lemma 2.3. �

A mapping w : D → Ω is proper if the preimage of every compact set in Ω is
compact in D. In the case where D = Ω = U, the mapping w is proper if and only
if |w(z)| → 1 as |z| → 1.

Lemma 2.8 (The main lemma). Let w be a solution of the PDE ∆w = g that
maps the unit disk onto itself properly. Let in addition w be Lipschitz continuous.
Then there exist for a.e. t = eiθ ∈ S1:

(2.19) ∇w(t) := lim
r→1−

∇w(rt)

and

(2.20) Jw(t) := lim
r→1−

Jw(reiθ),

and the following relation
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(2.21)

Jw(t) = ψ′(θ)
1

2π

∫ 2π

0

|f(t)− f(eiϕ)|2

|t− eiϕ|2
dϕ

+ ψ′(θ)
∫ 1

0

r
( 1

2π

∫ 2π

0

P (reiϕ, t) 〈g(rt), f(t)〉 dϕ
)
dr,

holds. Here ψ is defined by

eiψ(θ) := f(eiθ) = w|S1(eiθ).

If w is biharmonic (∆∆w = 0), then we have:

(2.22)

Jw(t) = ψ′(θ)
1

2π

∫ 2π

0

|f(t)− f(eiϕ)|2

|t− eiϕ|2
dϕ

+
ψ′(θ)

2

∫ 1

0

〈g(rt), f(t)〉 dr, t ∈ S1.

For an arbitrary continuous g and |g|∞ = max|z|≤1 |g(z)| the inequality

(2.23) |Jw(t)− ψ′(θ) 1
2π

∫ 2π

0

|f(t)− f(eiθ)|2

|t− eiθ|2
dθ| ≤ ψ′(θ)|g|∞

2
, t ∈ S1

holds.

Proof. First of all, according to Lemma 2.7, G[g] has a bounded derivative, and
there exists the function ∇G[g](eiθ), eiθ ∈ S1, which is continuous and satisfies the
limit relation

lim
z→eiθ,z∈D

∇G[g](z) = ∇G[g](eiθ).

Since w = P [f ] − G[g] has bounded derivative, from Lemma 2.1, it follows that
there exists

lim
r→1−

∇P [f ](reiθ) = ∇P [f ](eiθ).

Thus limr→1−∇w(reiθ) = ∇w(eiθ).
It follows that the mapping χ: χ(θ) = f(eiθ) := f(t), t ∈ S1, defines the outer

normal vector field nχ almost everywhere in S1 at the point χ(θ) = f(eiθ) =
eiψ(θ) = (χ1, χ2) by the formula:

(2.24) nχ(χ(θ)) = ψ′(θ) · f(eiθ).

Let $(r, θ) := w(reiθ). According to Lemma 2.1, we obtain:

(2.25) lim
r→1−

$θ(r, θ) = χ′(θ).

On the other hand, for almost every θ ∈ S1 we have

χj(θ)−$j(r, θ)
1− r

= $r(ρj,r,θ, θ)

where r < ρj,r,θ < 1, j = 1, 2. Thus we have:
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(2.26) lim
r→1−

$jr(r, θ) = lim
r→1−

χj(θ)−$j(r, θ)
1− r

, j ∈ {1, 2}.

Denote by p polar coordinates, i.e. p(r, θ) = reiθ.
We derive

(2.27)

lim
r→1−

Jw◦p(r, θ) = lim
r→1−

〈
χ− P [f ]

1− r
, ψ′(θ) · f(eiθ)

〉
+ Λ

= lim
r→1−

1
2π

∫ 2π

0

1 + r

|eiθ − reiϕ|2
〈
f(eiθ)− f(eiϕ), ψ′(θ) · f(eiθ)

〉
dϕ+ Λ

= lim
r→1−

ψ′(θ)
1

2π

∫ 2π

0

1 + r

|eiθ − reiϕ|2
〈
f(eiθ)− f(eiϕ), f(eiθ)

〉
dϕ+ Λ

= ψ′(θ)
1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2
dϕ+ Λ,

where

Λ = lim
r→1−

〈
G[g]
1− r

,−iχθ
〉
.

In order to estimate Λ, observe first that

lim
z→eiθ,z∈D

G(z, ω)
1− |z|

= lim
z→eiθ,z∈D

G(z, ω)−G(eiθ, ω)
1− |z|

= lim
r→1−

G(reiθ, ω)−G(eiθ, ω)
1− r

= −∂G(reiθ, ω)
∂r

∣∣∣∣
r=1

.

(2.28)

Since
∂G(reiθ, ω)

∂r
= zrGz(reiθ, ω) + z̄rGz̄(reiθ, ω), zr = eiθ, z̄r = e−iθ,

using (2.17) and (2.18) we obtain

(2.29) lim
z→eiθ,z∈D

G(z, ω)
1− |z|

=
1

2π
P (eiθ, ω).

On the other hand we have
1

2π

∫
U
P (ω, eiθ)

〈
g(ω), f(eiθ)

〉
dm(ω)

=
∫ 1

0

r(
1

2π

∫ 2π

0

P (reiϕ, eiθ)
〈
g(reiϕ), f(eiθ)

〉
dϕ)dr.

(2.30)

Next, we have

(2.31) Jw◦p(r, θ) = rJw(reiθ).

Combining (2.27), (2.29), (2.30) and (2.31) we obtain (2.21). Relations (2.22) and
(2.23) follow form (2.21) and (1.3). If w is biharmonic, then g is harmonic and thus

1
2π

∫ 2π

0

P (reiϕ, eiθ)
〈
g(reiϕ), f(eiθ)

〉
dϕ =

〈
g(r2eiθ), f(eiθ)

〉
.

This yields relation (2.22). �
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Lemma 2.9. If x ≥ 0 is a solution of the inequality x ≤ axα + b, where a ≥ 1 and
0 ≤ aα < 1, then

(2.32) x ≤ a+ b− αa
1− αa

.

Observe that for α = 0, (2.32) coincides with x ≤ a+ b, i.e. x ≤ axα + b.

Proof. We will use the Bernoulli’s inequality. x ≤ axα + b = a(1 + x − 1)α + b ≤
a(1 + α(x− 1)) + b. Relation (2.32) now easily follows. �

3. The main results

Theorem 3.1. Let g ∈ C(U). The family QC(K, g) of K-quasiconformal (K ≥ 1)
self-mappings of the unit disk U satisfying the PDE ∆w = g, w(0) = 0, is uniformly
Lipschitz, i.e. there is a constant M ′ = M ′(K, g) satisfying:

(3.1) |w(z1)− w(z2)| ≤M ′|z1 − z2|, z1, z2 ∈ U, w ∈ QC(K, g).

Moreover M ′(K, g)→ 1 as K → 1 and |g|∞ → 0.

In Remark 3.7 bellow is given a quantitative bound of M ′(K, g).

Proof. Combining Proposition 1.3 and Lemma 2.8, in the special case where the
range of a function is the unit disk, we obtain that there exist ∇w and Jw almost
everywhere in S1, and the following inequality

(3.2) Jw(t) ≤ ψ′(θ)
(

1
2π

∫ 2π

0

|f(eiϕ − f(eiθ)|2

|eiϕ − eiθ|2
dϕ+

|g|∞
2

)
holds.

Now from
|∇w(reiθ)|2 ≤ KJw(reiθ),

we obtain

(3.3) lim
r→1−

|∇w(reiθ)|2 ≤ lim
r→1−

KJw(reiθ),

almost everywhere in [0, 2π]. From Lemma 2.1, we deduce that

(3.4) lim
r→1−

∂(w(reiθ))
∂θ

=
∂f(eiθ)
∂θ

= ψ′(θ)eiψ(θ)

almost everywhere in [0, 2π]. Since

∂w ◦ S
∂θ

(r, θ) = ru′(reiθ)(ieiθ),

using (3.4) we obtain that

(3.5) ψ′(θ) ≤ lim
r→1
|∇w(reiθ)|.

From (3.2)-(3.5) we infer that

|∇w(eiθ)|2 ≤ K|∇w(eiθ)|
(

1
2π

∫ 2π

0

|f(eiϕ)− f(eiθ)|2

|eiϕ − eiθ|2
dϕ+

|g|∞
2

)
i.e.

(3.6) |∇w(eiθ)| ≤ K
(

1
2π

∫ 2π

0

|f(eiϕ)− f(eiθ)|2

|eiϕ − eiθ|2
dϕ+

|g|∞
2

)
.
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Let
M = ess sup

0≤τ≤2π
|∇w(eiτ )|.

According to Lemma 2.2 and to relation (3.5) we obtain

(3.7) |f(eiϕ)− f(eiθ)| ≤M |eiϕ − eiθ|.
Let µ = K−1, γ = −1 + K−2, and let ν = 1 − 1/K. Let ε > 0. Then there exists
θε such that

M(1− ε) ≤ |∇w(eiθε)|.
Applying now relation (3.6) and using (1.7), we obtain

(1− ε)M ≤ K
(
Mν 1

2π

∫ 2π

0

|eiθε − eiϕ|γ |f(eiθε)− f(eiϕ)|2−ν

|eiθε − eiϕ|µ2+µ
dϕ+

|g|∞
2

)

≤ KMνM1(K)1+µ 1
2π

∫ 2π

0

|eiθε − eiϕ|γdϕ+K
|g|∞

2

≤M2(K)Mν +
K|g|∞

2
,

where

M2(K) = KM1(K)1+µ 1
2π

∫ 2π

0

|eiθε − eiϕ|γdϕ.

Letting ε→ 0 we obtain

(3.8) M ≤M2(K)Mν +
K|g|∞

2
.

From (3.8) we obtain

(3.9) M ≤ C0 :=
(
M2(K) +

K|g|∞
2

)1/(1−ν)

=
(
M2(K) +

K|g|∞
2

)K
.

From Lemma 2.9, if

M1(K)1+µ 1
2π

∫ 2π

0

|eiθε − eiϕ|γdϕ < 1
K − 1

and g 6= 0, we obtain

(3.10) M ≤ C1 :=
M2(K) +K|g|∞/2− νM2(K)

1− νM2(K)
.

Let C2 := min{C0, C1}.
If g ≡ 0 then by (3.9) we get

(3.11) M ≤ C2 := (M2(K))1/(1−µ).

To continue observe that w −G[g] is harmonic. Thus

|∇w(z)−∇G(z)| ≤ ess sup
0≤τ≤2π

|∇w(eiτ )−∇G[g](eiτ )|.

According to Lemma 2.3 and Lemma 2.7 it follows that:

|∇w(z)| ≤ ess sup
0≤τ≤2π

|∇w(eiτ )|+ 2
3
|g|∞ +

1
2
|g|∞.
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Therefore the inequality (3.1) does hold for

(3.12) M ′ = C2 +
7
6
|g|∞.

Using (1.7), it follows that

lim
|g|∞→0,K→1

M ′(K) = 1.

�

Lemma 3.2. If w is a K-q.c. self-mapping of the unit disk satisfying the PDE
∆w = g and w(0) = 0, w|S1(eiθ) = f(eiθ) = eiψ(θ), g ∈ C(U), then for almost
every θ ∈ [0, 2π] the relation

(3.13)
1

2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2
dϕ ≤ Kψ′(θ) +

|g|∞
2

holds.

Proof. From (2.23) it follows that

(3.14)
Jw(eiθ)
ψ′(θ)

≥ 1
2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2
dϕ− |g|∞

2
.

Using Lemma 2.1 we obtain

(3.15) ψ′(θ) = |∂f(eiθ)
∂θ

| = | lim
r→1−

∂w(reiθ)
∂θ

|.

On the other hand

(3.16)
∂w(reiθ)

∂θ
= izwz(reiθ)− iz̄wz̄(reiθ) (z = reiθ).

Therefore

(3.17) | lim
r→1−

∂w(reiθ)
∂θ

| ≥ ||wz(t)| − |wz̄(t)|| = l(∇w(t)) (t = eiθ).

As w is K-q.c., according to (1.1) it follows that

(3.18)
Jw(t)

(l(∇w(t)))2
≤ K.

Combining (3.14) - (3.18) we obtain (3.13). �

Lemma 3.3. Under the conditions and notations of Lemma 3.2, there exists a
function m1(K) such that limK→1m1(K) = 1 and

(3.19) m(K) := max
{
m1(K)− |g|∞

4
,

4− 5|g|∞
8

}
≤ Kψ′(θ), for a.e. θ ∈ [0, 2π].

Proof. Applying (1.7) to the mapping w−1, we obtain

|f(z)− f(w)| ≥M1(K)−K |z1 − z2|K .
Using now relation (3.13) we obtain
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(3.20)

Kψ′(θ) ≥ 1
2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2
dϕ− |g|∞

2

≥M1(K)−2K 1
2π

∫ 2π

0

|eiθ − eiϕ|2K−2dϕ− |g|∞
2

.

= m1(K)− |g|∞
2

,

where

m1(K) = M1(K)−2K 1
2π

∫ 2π

0

|eiθ − eiϕ|2K−2dϕ.

Let us prove the second part of the inequality (3.19). Since w(0) = 0 we infer
that P [f ](0) = −G[g](0). Thus

P [f ](0) =
∫

U
G(0, ω)g(ω) dm(ω),

i.e. in polar coordinates

P [f ](0) =
1

2π

∫ 1

0

∫ 2π

0

r log
1
r
g(ω) dm(ω).

Hence

|P [f ](0)| ≤ |g|∞
∫ 1

0

r log
1
r
dr =

|g|∞
4

.

Next we have

Kψ′(θ) ≥ 1
2π

∫ 2π

0

|f(eiθ)− f(eiϕ)|2

|eiθ − eiϕ|2
dϕ− |g|∞

2

≥ 1
2π

∫ 2π

0

1
2

(
1− Re f(eiθ)f(eiϕ)

)
dϕ− |g|∞

2

≥ 1− |P [f ](0)|
2

− |g|∞
2

≥ 4− 5|g|∞
8

.

(3.21)

Combining (3.20) and (3.21) we obtain (3.19). �

Theorem 3.4. If w is a K-q.c. orientation preserving self-mapping of the unit
disk satisfying the PDE ∆w = g, w(0) = 0, g ∈ C(U), then for

m(K) = max
{
M1(K)−2K 1

2π

∫ 2π

0

|eiθ − eiϕ|2K−2dϕ− |g|∞
4

,
4− 5|g|∞

8

}
,

the inequality

(3.22) l(∇w) ≥ m(K)
K2

− 7|g|∞
6

where l(∇w(z)) = min{|∇w(z)t| : |t| = 1}, holds.
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Proof. Assume, as we may, that

(3.23)
m(K)
K2

− |g|∞
2
≥
(
m(K)
K2

− 7|g|∞
6

)
≥ 0.

From (3.19) and the definition of quasiconformality we deduce that:

m(K)
K2

≤ ψ′(θ)
K
≤ |∇w(eiθ)|

K
≤ l(∇w),

i.e
m(K)
K2

≤ |wz| − |wz̄|

almost everywhere on the unit circle.
According to relations (2.14) and (2.15) we obtain

(3.24)
m(K)
K2

− |g|∞
2
≤ |P [f ]z| − |P [f ]z̄|

almost everywhere on the unit circle.
To continue observe that, as w is q.c., it follows that f is a homeomorphism.

Hence by Choquet-Radó-Kneser theorem P [f ] is a diffeomorphism (see [15], [4] or
[23]).

Thus h := P [f ] is a harmonic diffeomorphism. According to the Heinz theorem
([8])

|hz|2 + |hz|2 ≥
1
π2
,

which, in view of the fact that |hz| ≥ |hz̄|, implies that

|hz| ≥
√

2
2π

.

Thus the functions

a(z) :=
hz̄
hz
, b(z) :=

1
hz

(
m(K)
K2

− |g|∞
2

)
are holomorphic and bounded on the unit disk. As |a|+ |b| is bounded on the unit
circle by 1 (see (3.23) and (3.24)), it follows that it is bounded on the whole unit
disk by 1 because

|a(z)|+ |b(z)| ≤ P [|a|S1 ](z) + P [|b|S1 ](z), z ∈ U.

This in turn implies that for every z ∈ U

(3.25) l(∇h) ≥ m(K)
K2

− |g|∞
2

.

By (2.10) and (2.11) we obtain

(3.26) l(∇w) ≥ m(K)
K2

− 1
2
|g|∞ −

2
3
|g|∞.

�

Having in mind the fact l(∇w(z)) = |∇w−1(w(z))|−1, and putting Theorem 3.1
and Theorem 3.4 together we obtain:
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Theorem 3.5. Let QC(K, g) be the family of orientation preserving K-q.c. self-
mappings of the unit disk satisfying the equation ∆w = g and w(0) = 0. Then
for |g|∞ small enough (for example if |g|∞ ≤ 12

15+28K2 ) the family QC(K, g) is
uniformly bi-Lipschitz, i.e. there exists M0(K, g) ≥ 1 such that

M0(K, g)−1 ≤ |w(z1)− w(z2)|
|z1 − z2|

≤M0(K, g), w ∈ QC(K, g), for z1, z2 ∈ U, z1 6= z2.

Moreover
lim

|g|∞→0,K→1
M0(K, g) = 1.

Example 3.6. Let w(z) = |z|αz, with α > 1. Then w is twice differentiable
(1 + α)−quasiconformal self-mapping of the unit disk. Moreover

∆w = α(2 + α)
|z|α

z̄
= g.

Thus g = ∆w is continuous and bounded by α(2 + α). However w is not co-
Lipschitz (i.e. it does not satisfy (1.5)), because l(∇w)(0) = |wz(0)| − |wz̄(0)| = 0.
This means that the condition “|g|∞ is small enough” in Theorem 3.5 cannot be
replaced by the condition “g is arbitrary”.

Remark 3.7. Let QCK(U) be the family of K−quasiconformal self-mappings of
the unit disk. Let M1(K) be the Mori’s constant:

M1(K) = inf{M : |f(z1)−f(z2)| ≤M |z1−z2|1/K , z1, z2 ∈ U, f ∈ QCK(U), f(0) = 0}.
In [22] is proved that

M1(K) ≤ 161−1/K min

{(
23
8

)1−1/K

, (1 + 23−2K)1/K

}
.

Since for α > −1
1

2π

∫ 2π

0

|eiθ − eiϕ|αdϕ =
2α+1

π

√
πΓ[ 1+α

2 ]
αΓ[α2 ]

,

our proofs, in the case of harmonic mappings (g ≡ 0), yield the following estimates
for co-Lipschitz constant

(3.27) m2 :=
22K−2Γ[K − 1/2]√

π(K3 −K2)Γ[K − 1]M1(K)2K

which is

≥ 1
K2M1(K)2K

≥ 462

K2462K
,

and therefore is better than the corresponding constant

(3.28) m1 :=
2K(1−K2)(3+1/K)/2

K3K+1(K2 +K − 1)3K

obtained in the paper [20] for every K (see the appendix below).
Similarly we obtain the following estimate for the Lipschitz constant (see (3.9)

and (3.12)).

M ′ =

(
KM1(K)1+1/K

(
2K
−2

Γ[K−2/2]√
π(K−2 − 1)Γ[(K−2 − 1)/2]

)
+
K|g|∞

2

)K
+

7|g|∞
6

.
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The last constant (if g ≡ 0) is not comparable with the corresponding constant

K3K+125(K−1/K)/2

obtained in the same paper [20] (it is better if K is large enough but it is not for
K close to 1). It seems that in the proof of Theorem 3.1 there is some small place
for improvement of M ′ (taking ν 6= 1−K−1).

3.1. Appendix. Let us prove that m2 ≥ m1, where m1 and m2 are defined in
(3.27) and (3.28). Since (3 · (32 + 3− 1))3/2 > 46, the inequality follows directly if
K ≥ 3.
Assume now that 1 ≤ K ≤ 3. First of all we have

462

K2462K
− 2K(1−K2)(3+1/K)/2

K3K+1(K2 +K − 1)3K
≥ 1
K2

(
462−2K

(
1− 462K−2 · 22(1−K2)

K8

))
.

Therefore, the inequality

(3.29) 462K−2 · 22(1−K2) ≤ K8

implies m2 ≥ m1.
Let K ≤ 2. Then 46

21+K < 16 = 24. By Bernoulli’s inequality 2K−1 = (1 + 1)K−1 ≤
1 +K − 1 = K for K ≤ 2. This yields (3.29).
Assume now that 2 ≤ K ≤ 3. Then

46
21+K

< e2.

Thus (
46

21+K

)K−1

≤ e2(K−1).

Therefore, if we prove
eK−1 ≤ K2 for 2 ≤ K ≤ 3

we will prove the inequality m2 ≥ m1 completely.
Let x = K − 1. Then

K2 − eK−1 = 1 + 2x+ x2 − 1− x− x2/2− x3/3!− x4/4!− ...
= x(1 + x/2− x2/3!− x3/4!− ...)
≥ x(1− x3/4!− ...)
≥ x(1− 0.5(e2 − 1− 2− 22/2− 23/6)) > x/2,

as desired.
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