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Abstract. We prove a version of ”inner estimate” for quasi-conformal
diffeomorphisms, which is satisfying certain estimate concerning their
laplacian. As an application of this estimate, we show that quasi-
conformal harmonic mappings between smooth domains (with respect
to the approximately analytic metric), have bounded partial derivatives;
in particular, these mappings are Lipschitz.

Our discussion includes harmonic mappings with respect to (a) spher-
ical and euclidean metrics (which are approximately analytic) as well as
(b) the metric induced by the holomorphic quadratic differential.

1. Introduction and statement of the main result

1.1. Basic facts and notations. U and H denote, respectively the unit
disc and the upper half plane. By Ω, Ω′ and D we denote the simply
connected domains. Suppose that γ is a rectifiable curve in the complex
plane or in Riemann surface R. Denote by l the length of γ and let Γ :
[0, l] 7→ γ be the natural parameterization of γ, i.e. the parameterization
satisfying the condition:

|Γ̇(s)| = 1 for all s ∈ [0, l].

We will say that γ is of class Cn,µ, for n ∈ N, 0 < µ ≤ 1, if Γ is of class
Cn and

sup
t,s

|Γ(n)(t)− Γ(n)(s)|
|t− s|µ

<∞.

Jordan domains in C bounded by Cn,µ Jordan curves, we will call Cn,µ

domains or smooth ones.

Let ρ(w)|dw|2 be an arbitrary conformal C1-metric defined on D. If
f : Ω → D is a C2 mapping between Jordan domains Ω and D, the energy
integral of f is defined by the formula:

(1.1) E[f, ρ] =
∫

Ω
ρ ◦ f(|fz|2 + |fz̄|2)dx dy.
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The stationary points of the energy integral satisfy the Euler Lagrange equa-
tion

(1.2) fzz + (log ρ)w ◦ ffz fz̄ = 0,

and a C2 solution of this equation is a called harmonic mapping (more
precisely a ρ-harmonic mapping).

It is known that f is a harmonic mapping if and only if the mapping

(1.3) Ψ = ρ ◦ ffzf z̄
is analytic; and we say that Ψ is the Hopf differential of f and we write
Ψ =Hopf(f).

If ϕ is a holomorphic mapping and different from 0 on D and ρ = |ϕ| on
D, we call ρ a ϕ− metric.
The corresponding harmonic mapping we will call ϕ−harmonic.
Notice that for ρ = 1, ρ-harmonic mapping is an Euclidean harmonic func-
tion.

Since we consider diffeomorphisms or C2-mappings, we can use the fol-
lowing definition of quasiconformal mappings.
Let 0 ≤ k < 1 and K = 1+k

1−k . An orientation preserving diffeomorphism
f : Ω 7→ D between two domains Ω, D ⊂ C is called K -quasiconformal
mapping or shortly a q.c. mapping if it satisfies the condition:

(1.4) |fz(z)| ≤ k|fz(z)| for each z ∈ Ω.

Occasionally, in this setting, it is also convenient to say that f is a k
-quasiconformal mapping.

In this paper we will mainly consider harmonic quasiconformal mappings
between smooth domains.

1.2. Background. It seems that Martio ([17]) was the first one who consid-
ered the problem of characterization of harmonic quasiconformal mappings
w.r. to the Euclid metric for the unit disc. Now there is a number of results
related to this topic.

Theorem P. If w is a harmonic diffeomorphism of the unit disc onto itself,
then the following conditions are equivalent: w is q.c.; w is bi-Lipschitz;
the boundary function is bi-Lipschitz and the Hilbert transformation of its
derivative is in L∞. See [22].

Theorem KP. An orientation-preserving homeomorphism ψ of the real axis
can be extended to a q.c. harmonic homeomorphism of the upper half-plane
if and only if ψ is bi-Lipschitz and the Hilbert transformation of the deriv-
ative ψ′ is bounded. See [13] and [10].

Theorem K. If Ω and Ω′ are Jordan domains with C1,µ boundary (0 <
µ ≤ 1), then every quasiconformal harmonic function from Ω onto Ω′ is
Lipschitz. If Ω′ is convex, then w is bi-Lipschitz. Moreover if w : Ω 7→ Ω′

is a harmonic diffeomorphism, where Ω is the unit disc and Ω′ is a convex
domain with C1,µ boundary then the following conditions are equivalent: w
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is quasiconformal; w is bi-Lipschitz; the boundary function is bi-Lipschitz
and the Hilbert transformation of its derivative is in L∞; and therefore a
harmonic diffeomorphism in this setting is a quasi-isometry w.r. to the cor-
responding Poincaré distance. See [14].

Concerning quasi-isometry it seems that the second author in joint work
with M. Knežević obtained the right constant (See [16]). Namely, they
proved that:

Theorem MK1. If f is K−q.c. harmonic diffeomorphism from the upper
half plane H onto itself and f(∞) =∞, then

|z1 − z2|/K ≤ |f(z1)− f(z2)| ≤ K|z2 − z1| where z1, z2 ∈ H
and f is (1/K,K) quasi-isometry w.r. to Poincaré distance.

Theorem MK2. If f is K−q.c. harmonic diffeomorphism from the unit
disc U onto itself, then f is (1/K,K) quasi-isometry w.r. to Poincaré dis-
tance:

dh(z1, z2)/K ≤ dh(f(z1), f(z2)) ≤ Kdh(z1, z2),
where dh is hyperbolic distance in the unit disc.
Concerning the hyperbolic q.c. harmonic mapping we present here two
results:
Theorem W1. Every harmonic quasi-conformal mapping from the unit
disc onto itself is a quasi-isometry of Poincaré disc. See [28].

Theorem W2. A harmonic diffeomorphism of the hyperbolic plane H2 is
quasiconformal if and only if its Hopf differential is uniformly bounded with
respect to the Poincaré metric. See [28].

For the other results in this area see [19],[16],[7], [25], [29], [26], [21] and
[2].

1.3. New results. The following proposition has an important role in the
proofs concerning results obtained in [10], [13] and [16].

Proposition 1.1. If f is an Euclidean harmonic 1 − 1 mapping of the
upper half-plane H onto itself, normalized by f(∞) =∞ and v = Imf , then
v(z) = cy, where c is a positive constant. In particular, v has bounded partial
derivatives on H.

Suppose that f is a harmonic Euclidean mapping of the unit disc onto
smooth domain D and ψ is conformal mapping of D onto H, then the com-
position ψ ◦ f is very rarely Euclidean harmonic, so we can not apply the
Proposition 1.1. However, the composition satisfies a simple equation (see
(4.3), Section 4) and it is harmonic with respect to the other metric ρ de-
fined on H by ρ(ζ)|dζ| = |dw|, where ζ = ψ(w). Having this in mind, our
idea is to apply the following essential generalization of Proposition 1.1:

Proposition 1.2 (Inner Estimate). (Heinz-Bernstein, see [9]). Let s :
U 7→ R be a continuous function from the closed unit disc U into the real
line satisfying the conditions:
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(1) s is C2 on U,
(2) sb(θ) = s(eiθ) is C2 and
(3) |∆s| ≤ c0| 5 s|2 on U for some constant c0.

Then the function | 5 s| = |grad s| is bounded on U.

We refer to this result as the inner estimate. Applying this estimate and
Kellogg - Warshawski results we prove the main result of this paper.

Theorem 1.3 (Main Result). Let f be a quasiconformal C2 diffeomorphism
from the C1,α Jordan domain Ω onto the C2,α Jordan domain D. If there
exists a constant M such that

(1.5) |∆f | ≤M |fz · fz̄| , z ∈ Ω,

then f has bounded partial derivatives. In particular, it is a Lipschitz map-
ping.

Notify that equation (2.3) (see below) shows how to transform condition
(1.5) if we consider compositions of the mapping f by conformal mappings.
In particular, Theorem 1.3 holds if h is quasiconformal ρ-harmonic and the
metric ρ is approximately analytic, i.e. |∂̄ρ| ≤ M |ρ| on Ω, (see Theorems
3.1-3.2, 3.4, 4.4 below).
Notice that

(a) Theorem 3.1 can be considered as a special case of Theorem 3.4 and
4.4 and

(b) Euclidean and spherical metrics are approximately analytic, so our
results can be considered as extensions of the corresponding ones
proved in [17], [22], [13], [10] and [14] (mentioned in subsection 1.2).

The paper is organized as follows. The main result is proved in Section 2
and its applications are given in Section 3.
In Section 4, we show that the composition of a conformal mapping ψ and
a ϕ− harmonic mapping satisfies a certain equation (see Theorem 4.1); and
in particular, if ψ is a natural parameter, we obtain a representation of
ϕ−harmonic mappings by means of Euclidean harmonics. As applications,
we produce some examples of ϕ−harmonic mappings and prove that Theo-
rem 3.1 holds for more general domains.

2. The proof of main result

We need the following propositions:

Proposition 2.1 (Kellogg). See for example [8]. If a domain D = Int(Γ)
is C1,α and ω is a conformal mapping of U onto D, then ω′ and lnω′ are in
Lipα. In particular, |ω′| is bounded from above and below on U .

Proposition 2.2 (Kellogg and Warschawski). See [23, Theorem 3.6]. If a
domain D = Int(Γ) is C2,α and ω is a conformal mapping of U onto D,
then |ω′′| has a continuous extension to the boundary. In particular it is
bounded from above on U .
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Proof of Theorem 1.3. Let g be a conformal mapping of the unit disc onto
Ω. Let f̃ = f ◦ g. Since ∆f̃ = |g′|2∆f and f̃z · f̃z̄ = |g′|2fz · fz̄, we obtain
that f̃ satisfies the inequality (1.5). We will prove the theorem for f̃ and
then apply Kellogg’s theorem. To simplify notations, we will use f instead
of f̃ . Let t ∈ ∂U = T be an arbitrary fixed point. In order to continue the
proof (to apply inner estimate), we use the following procedure which we
call local construction:

Step 1 (Local Construction): There are two Jordan domains D1 and
D2 in D with C2,α boundary such that

(i) D1 ⊂ D2 ⊂ D,
(ii) ∂D ∩ ∂D2 = l is connected arc containing the point w = f(t) in its

interior,
(iii) ∂D1 ∩ ∂D2 is a connected arc containing l and ∅ 6= ∂D2 \ ∂D1 ⊂ D.

It is convenient for the reader to make a picture to visualize this construction.
We can obtain an example of the sets D1 and D2 by following procedure.
Let ψ be a conformal mapping of D onto the upper half-plane such that
ψ(f(t)) 6= ∞. Choose now two C3 subdomains H1 and H2 of H such that
H1 ⊂ H2 and ∂H1 ∩ R = [c0, d0] ⊂ ∂H2 ∩ R = [a0, b0], a0 < c0 < ψ(f(t)) <
d0 < b0. Then we take Di = ψ−1(Hi), i = 1, 2.

Step 2 (Application of the Inner Estimate). Let φ be a conformal
mapping of D2 onto H such that φ−1(∞) ∈ ∂D2 \ ∂D1. Let Ω∗ = φ(D1).
Then there exist real numbers a, b, c, d such that a < c < d < b, [a, b] =
∂Ω ∩ R and ` = φ−1(∂Ω∗ \ [c, d]) ⊂ D. Let U1 = f−1(D1) and η be a
conformal mapping between the unit disc and the domain U1. Then the
mapping f̂ = φ◦f ◦η is a C2 diffeomorfism of the unit disc onto the domain
Ω∗ such that:

(a) f̂ is continuous on the boundary T = ∂U (it is q.c.) and
(b) f̂ is C2 on the set T1 = f̂−1(∂Ω \ (c, d)).

Let s := v̂ = Im f̂ . Note first that, because of (a), s is continuous on
T = ∂U . On other hand, since f̂ ∈ C2, s satisfies the condition:

(1) s ∈ C2(U).

From (b) we obtain that s is C2 on the set T1 = f̂−1(∂Ω \ (c, d)). Further
s satisfies the condition: s = 0 on T2 = f̂−1(a, b); and therefore s is C2 on
T2 = f̂−1(a, b). Hence we have:

(2) s is C2 on T = T1 ∪ T2. In other words, the function sb : R 7→ R
defined by sb(θ) = s(eiθ) is C2 in R.

In order to apply the inner estimate, we have to prove that the function s
satisfies the condition

(3) |∆s(z)| ≤ c0| 5 s(z)|2, z ∈ U, where c0 is a constant.
We start with the equalities:

(2.1) sz =
f̂z − f̂z̄

2i
and sz̄ =

f̂z̄ − f̂z
2i

,
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which imply the equality
sz = sz̄

and therefore

(2.2) |sz|2 = |sz̄|2 =
| 5 s|2

2
.

Since f̂ = φ ◦ f ◦ η, we obtain the equality (see also Theorem 4.1, Section 4
below)

(2.3)
f̂zz̄

f̂z · f̂z̄
=
(
φ′′

φ′2
+

1
φ′

∂∂̄f

∂f · ∂̄f

)
.

Observe that f̂ is a k- q.c. mapping. Hence

|∆s| = |Im ∆f̂ | ≤ |f̂z| · |f̂z̄| ·
∣∣∣∣ φ′′φ′2 +

1
φ′

∂∂̄f

∂f · ∂̄f

∣∣∣∣ ≤ k|f̂z|2 ∣∣∣∣ φ′′φ′2 +
1
φ′

∂∂̄f

∂f · ∂̄f

∣∣∣∣ .
Using (2.1) and (2.2) respectively, we obtain that

(1− k)|f̂z| ≤ 2|sz|,

and

(2.4) |∆s| ≤ 2k
(1− k)2

∣∣∣∣ φ′′φ′2 +
1
φ′

∂∂̄f

∂f · ∂̄f

∣∣∣∣ · | 5 s|2.

By applying Proposition 2.1 and the Proposition 2.2, it follows that the
function |φ′| is bounded from below by a positive constant C1 and the func-
tion is |φ′′| bounded from above by a constant C2. Now using (1.5), we
obtain the inequality:

(2.5)
∣∣∣∣ φ′′φ′2 +

1
φ′

∂∂̄f

∂f · ∂̄f

∣∣∣∣ ≤ 4C2 +MC1

4C2
1

.

Combing (2.4) and (2.5), we conclude that the function s satisfies the in-
equality

|∆s| ≤ c0| 5 s|2,
where

c0 =
2k

(1− k)2
· 4C2 +MC1

4C2
1

.

Now from Proposition 1.2 we derive that the function | 5 s| is bounded by
a constant bt. Since f̂ is a k−q.c. mapping, we have

(1− k)|f̂z| ≤ |f̂z − f̂z̄| ≤ 2|sz| ≤
√

2bt.

Finally, we obtain the inequality

|f̂z|+ |f̂z̄| ≤
√

2
1 + k

1− k
bt.
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Put T tc,d = (f ◦η)−1(c, d). Observe that c and d depend on the fixed point
t. Since t ∈ T tc,d we obtain T =

⋃
t∈T T

t
c,d, and therefore there exists a finite

set {t1, . . . , tn} such that T =
⋃n
i=1 T

ti
c,d.

Since the mapping ηi = η is conformal and maps the circle arc Ti =
(φ ◦ f ◦ η)−1(a, b) onto the circle arc (φ ◦ f)−1(a, b), it follows that it can be
conformally extended across the arc T ′i = (φ ◦ f ◦ η)−1[c, d], and hence there
exists a constant Ai such that |η′(z)| ≥ 2Ai on T ′i . It follows that there
exists ri ∈ (0, 1) such that |η′(z)| ≥ Ai in Ti = {ρz : z ∈ T ′i , ri ≤ ρ ≤ 1}.
Also, applying Proposition 2.1, we infer that the conformal mapping φi = φ
and its inverse have the C1 extension to the boundary. It follows that there
exists a positive constant Bi such that |φ′(z)| ≥ Bi on some neighborhood of
φ−1[c, d] with respect to D. We obtain that the mapping f = φ−1 ◦ f̂ ◦ η−1

has bounded derivative in some neighborhood of the set T tic,d, on which it is
bounded by the constant

Ci =
√

2
1 + k

1− k
bti
AiBi

.

Set C0 = max{C1, . . . , Cn}. Then

|fz(z)|+ |fz̄(z)| ≤ C0 for all z ∈ U near to T = ∂U.

Since f is diffeomorphism in U , we obtain the desired conclusion. �

3. Applications

Let D be a domain in C and ρ be a conformal metric in D. The Gaussian
curvature on the domain is given by

KD = −1
2

∆ log ρ
ρ

.

If, in particular, the domain D is a simply connected in C and the Gauss-
ian curvature KD = 0 on D, then ∆ log ρ = 0 and therefore ρ = |eω|, where
ω is a holomorphic function on D.

Thus the metric ρ is induced by non-vanishing holomorphic function
ϕ(z) = eω(z) defined on the domain D; in this setting we call ρ a ϕ− metric.
The corresponding harmonic mapping we will call ϕ−harmonic.
Roughly speaking, ϕ−harmonic maps arise if the curvature of target is 0.

Since ρ2 = ϕϕ, a short computation yields 2ρρw = ϕ′ϕ and therefore
2(log ρ)w = (logϕ)′. Hence, by (1.2) we obtain: if f is ϕ− harmonic, then

(3.1) fzz +
ϕ′

2ϕ
◦ ffz fz̄ = 0.

As a direct application of Theorem 1.3 (the main result), using the equal-
ity (3.1), we obtain the following theorem:

Theorem 3.1. Let f be a ϕ−harmonic mapping of the unit disc U onto a
C2,α Jordan domain D. If M = ||(logϕ)′||∞ <∞ and f is quasiconformal,
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then f has bounded partial derivatives and in particular, it is a Lipschitz
mapping.

Proof. It is enough to notice that the hypothesis M = ||(logϕ)′||∞ <∞ and
equality (3.1) implies that the crucial hypothesis (1.5) of the main theorem
is satisfied. �

Theorem 3.2 (Local version). Let f be a C2 ϕ−harmonic mapping of the
unit disc U onto the C2,α Jordan domain D having continuous extension f̃ to
the boundary such that f̃(∂U) = ∂D. If f is quasiconformal in some neigh-
borhood of a point z0 ∈ T = ∂U and (lnϕ)′ is bounded in some neighborhood
of w0 = f(z0), then f has bounded partial derivatives and in particular, it
is a Lipschitz mapping in a neighborhood of the point z0.

Proof. Let be r > 0 such that f is q.c. in U0 = D(z0, r) ∩ U . Then γ0 =
f(T ∩D(z0, r)) is a C2,α Jordan arc in ∂D containing w0. Now following the
proof of Theorem 1.3, we obtain that the function f has bounded partial
derivatives near the arc γ = f(T ∩ D̄(z0, r/2)) and so in some neighborhood
of the point z0. �

Definition 3.3. A function χ which is of class C1 and satisfies the inequality
|∂̄χ| ≤M |χ| in a domain D is said to be approximately analytic in D with
the constant M .

If a ϕ-metric satisfies the hypothesis M = ||(logϕ)′||∞ <∞ on a domain
D, then it is approximately analytic. The hypothesis implies that |ϕ′| ≤
M |ϕ| on D. Hence, since |ϕ|z ≤ |ϕ′| and 2ρzρ = |ϕ|z, it follows 2ρzρ =
|ϕ|z ≤ |ϕ′| ≤M |ϕ| = Mρ2 on D. Thus the metric is approximately analytic
in D with the constant M/2.

The following theorem, concerning approximately analytic metric, is a
generalization of Theorem 3.1.

Theorem 3.4. Let f be a C2 ρ−harmonic mapping of the unit disc U onto
the C2,α Jordan domain D. If the metric ρ is approximately analytic in
D and f is quasiconformal, then f has bounded partial derivatives; and, in
particular, it is Lipschitz mapping.

The proof of the Theorem 3.4 follows directly from Theorem 1.3(the main
result), using the fact that the equation |∂̄χ| = |∂χ| holds for all real func-
tions χ. The following theorem can be proved in the same way as Theo-
rem 3.2.

Theorem 3.5 (Local version). Let f be a C2 ρ−harmonic mapping of the
unit disc U onto the C2,α Jordan domain D having continuous extension
f̃ to the boundary such that f̃(∂U) = ∂D. If f is quasiconformal in some
neighborhood of a point z0 ∈ T = ∂U , and the metric ρ is approximately
analytic in some neighborhood of w0 = f(z0), then f has bounded partial
derivatives, and in particular it is a Lipschitz mapping in a neighborhood of
the point z0.
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The harmonic and q.c. mappings between Riemann surfaces

Similarly as in the case of domains of complex plane we define quasicon-
formal mapping and harmonic mapping f : R 7→ S between the Riemann
surfaces R and S with the metrics % and ρ respectively.

If f is a harmonic mapping then

(3.2) ϕdz2 = ρ ◦f fz f z̄ dz2

is a holomorphic quadratic differential on R, and we say that ϕ is the Hopf
differential of f and we write ϕ =Hopf(f).

Lemma 3.6. Let (S1, ρ1) and (S2, ρ2) and (R, ρ) be three Riemann surfaces.
Let g be an isometric transformation of the surface S1 onto the surface S2:

ρ1(ω)|dω|2 = ρ2(w)|dw|2, w = g(ω).

Then f : R 7→ S1 is ρ1- harmonic if and only if g ◦ f : R 7→ S2 is ρ2-
harmonic. In particular, if g is an isometric self-mapping of S1, then f is
ρ1- harmonic if and only if g ◦ f is ρ1- harmonic.

Proof. If f is a harmonic map then ϕdz2 = ρ ◦f p q dz2 is a holomorphic
quadratic differential in R, i.e., the mapping ρ ◦f p q is analytic near to the
parameter z = z(ζ), ζ ∈ R. Let ω = f(z), F = g ◦ f , P = (g ◦ f)z and Q =
(g ◦ f)z̄. Then P = g′(ω) · p and Q = g′(ω) · q. Since ρ1(ω) = ρ2(w)|g′(ω)|2,
we obtain

ρ2 ◦ F PQ̄ = ρ2 ◦ g ◦ f · |g′(ω)|2pq = ρ1 ◦ fpq̄.
Hence ϕ1 =Hopf(g ◦ f) is a holomorphic differential, i.e., g ◦ f is harmonic
w.r. to the metric ρ2. �

Instead of an arbitrary Riemann surface we consider here only the Rie-
mann sphere. Note that most of the arguments work for an arbitrary com-
pact Riemann surface.

The metric ρ defined on S2 = C by

ρ|dz|2 =
4|dz|2

(1 + |z|2)2

we call the spherical metric. The corresponding distance function is

(3.3) dS(z, w) =
2|z − w|√

(1 + |z|2)(1 + |w|2)
, dS(z,∞) =

2√
(1 + |z|2)

.

We can verify that the orientation preserving isometries of Riemann sphere
S2 w.r. to the spherical metric are described by Möbius transformations of
the form

(3.4) g(z) =
az + b

ā− b̄z
, a, b ∈ C, |a|2 + |b|2 6= 0.

The Euler-Lagrange equation for spherical harmonic mappings is

(3.5) fzz̄ −
2f̄

1 + |f |2
fz · fz̄ = 0.
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It is easy to verify that the spherical density is approximately analytic in C
with the constant 1; more precisely one can verify

ρz
ρ

=
2z

1 + |z|2
.

If f is a diffeomorphism of the Riemann sphere (or of a compact Riemann
surface M) onto itself, then f is quasi-isometry w.r. to the corresponding
metric and consequently, it is quasiconformal.

A natural question is what we can say for harmonic q.c. diffeomorphisms
defined in some sub-domain of the Riemann sphere.

Using Theorem 3.4, Lemma 3.6 and the isometries defined by (3.4) we
can prove:

Proposition 3.7. Let the domains Ω, D ⊂ C have C1,α and C2,α Jordan
boundary on S2 = C, respectively. Then any q.c. spherical harmonic diffeo-
morphism of Ω onto D is Lipschitz w.r. to the spherical metric.

4. Representation of ϕ−harmonic mappings

If f is ϕ−harmonic, and φ is so called natural parameter defined by ϕ then
the mapping F = φ◦f is an euclidean harmonic. Application of Theorem K
(see the introduction) to F = φ ◦ f leads to Theorem 4.4(the main result of
this section), which shows that Theorem 3.1 holds for more general domains.

Recall that if f is ϕ−harmonic, then it satisfies the equation (3.1). If
ϕ(w0) 6= 0, then there is a neighborhood V of w0 such that there is a branch√
ϕ in V such that

(4.1) φ =
∫ √

ϕ(z) dz

is conformal on V .
In this setting, we refer to φ =

∫ √
ϕ(z) dz as a natural parameter on V .

Theorem 4.1. If f is ϕ−harmonic and ψ is conformal on the co-domain
of f , then the mapping F = ψ ◦ f satisfies the following equation:

(4.2) Fzz̄ =
[
ψ′′(w)
ψ′(w)2 −

ϕ′(w)
2ψ′(w) · ϕ(w)

]
· Fz · Fz̄,

where w = f(z).

Proof. Since φ is analytic we have that Fz = ψ′(w) · fz and that Fz̄ =
ψ′(w) · fz̄. Hence Fzz̄ = ψ′′(w)fzfz̄ + ψ′(w)fzz̄. On the other hand, f is ϕ−
harmonic and therefore:

fzz = −1
2
ϕ′

ϕ
◦ f · fz fz̄.

Combining those facts, we obtain (4.2).
�
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Notice that if ϕ = 1, then ϕ-metric is reduced to Euclidean metric; so if
f is an Euclidean harmonic mapping, then

(4.3) Fzz̄ =
ψ′′

ψ′2
Fz · Fz̄ .

Corollary 4.2. Let ϕ be an analytic function such that there exists a branch
of
∫ √

ϕ(z) dz in some domain D. If f : Ω 7→ D is ϕ−harmonic and

φ =
∫ √

ϕ(z) dz,

then the mapping F = φ ◦ f is harmonic with respect to the Euclid metric.

Proof. We easily obtain

φ′′(w)
φ′(w)2 −

ϕ′(w)
2φ′(w) · ϕ(w)

= 0.

It follows from (4.2) that Fzz̄ ≡ 0. Hence F is harmonic. �

Using (4.3) we obtain:

Corollary 4.3. Let h be an Euclidean harmonic mapping, let ψ be conformal
on the co-domain of h; and let ϕ = ((ψ−1)′)2. Then the mapping ĥ = ψ ◦ h
is ϕ- harmonic.

Recall, if f is ϕ−harmonic, and φ is natural parameter defined by ϕ then
the mapping F = φ◦f is Euclidean harmonic. Applying Theorem K (see the
introduction and also [14, Theorem 3.1]) to C1,α co-domain D′ = φ(D) and
Euclidean harmonic mapping F = φ ◦ f (note that φ is not 1-1 in general),
we can prove that Theorem 3.1 holds for more general domains.

Theorem 4.4. Let f be a ϕ−harmonic mapping of the C1,α domain Ω
onto the C1,α Jordan domain D. If M = ||(logϕ)′||∞ < ∞ and f is quasi-
conformal, then f has bounded partial derivatives and in particular, it is a
Lipschitz mapping.

Assume that ϕ(z) 6= 0 and that the natural parameter

φ(z) =
∫ √

ϕ(z) dz

is well defined on a domain D; and let φ maps D onto the convex domain
D′ = φ(D).

By the definition of ϕ- metric, we have that:

d(z, w) = inf
z,w∈γ⊂D

∫
γ

√
|ϕ(ζ)||dζ|.

Since √
|ϕ(ζ)||dζ| = |d(φ(ζ))|,
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setting A = φ(z), B = φ(w) and ξ = φ(ζ), by the chain rule we obtain that

d(z, w) = inf
A,B∈γ′⊂D′

∫
γ′
|dξ|,

where D′ = φ(D).
Now it is clear that the segment [A,B] that belongs to D′ (because D′

is convex), is the curve that minimizes the previous functional. Hence
d(z, w) = |A − B| = |φ(z) − φ(w)|. Thus we have proved the following
proposition:

Proposition 4.5. If D′ = φ(D) is convex, then φ transforms the ϕ-metric
to Euclidean metric; i.e. the distance function defined by ϕ- metric is given
by the formula

d(z, w) = |φ(z)− φ(w)| .

Example 4.6. Let ϕ0(w) = 1
(w−c0)2

and let us consider the harmonic maps
between two domains Ω and D with respect to the following metric density
on D:

(4.4) ρ0(w) = |ϕ0(w)| = 1
|w − c0|2

, w ∈ D,

where c0 6∈ D is a given point. If D′ = log(D − {c0}) is a convex domain,
then the metric defined by the metric density (4.4) is

d0(z, w) =
∣∣∣∣log

z − c0

w − c0

∣∣∣∣ .
It is easy to verify that the conformal mappings A:

(4.5) A(z) = c0 + reiα(ε−1)/2(z − c0)ε, r ∈ R, ε = ±1,

describe the orientation preserving isometries of the domain Dα = C \ {c0 +
teiα, t ∈ R+}, with respect to the metric d0 given by (4.4).

Let f be ϕ0−harmonic between Ω and D, where D ⊂ Dα for some α. The
natural parameter is φ0(w) = ± log(w− c0). Hence, as an application of the
Corollary 4.2, we obtain that F (z) = log(f(z)− c0) is a harmonic function
defined on the simply connected domain Ω. Hence we have

f(z)−c0 = eg0(z)+h0(z) = g1(z)·h1(z) =
(√
c0−

1
√
c0
g(z)

)
·
(
−
√
c0+

1
√
c0

h(z)
)
,

which yields the representation:

(4.6) f(z) = g(z) + h(z)− c0
−1g(z) · h(z),

where g and h are analytic mappings, which map Ω into C \ {c0}.
It is easy to see that the family of mappings defined by (4.6) is closed

under transformations given by (4.5) (see Lemma 3.6).

The above example provides the motivation for the following result.
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Theorem 4.7. Let g and h be analytic functions and let f = g+h−c0
−1gh,

c0 6= 0, be a diffeomorphism of the C1,β domain Ω onto the C1,α Jordan
domain D such that c0 ∈ C \D. If f is q.c. mapping, then it has bounded
partial derivatives and the analytic functions g′ and h′ are bounded.

Proof. The case c0 = ∞ is proved by Theorem 4.4 and therefore we can
assume that c0 6=∞. Put

g1 =
√
c0 −

1
√
c0
g and h1 = −

√
c0 +

1
√
c0

h.

Then f−c0 = g1 ·h1. Since f(z) 6= c0 it follows that h1(z) 6= 0 and g1(z) 6= 0.
Therefore we can take the mapping F = log(f − c0) which can be written
as F = log g1 + log h1 on Ω. Hence F is a harmonic mapping of Ω onto C1,α

domain D′ = log(D − c0). We obtain from Theorem 4.4 that there exists a
constant M such that

(4.7)
∣∣∣∣h′1h1

∣∣∣∣2 +
∣∣∣∣g′1g1

∣∣∣∣2 < M.

Thus (log h1)′ is bounded on Ω and consequently log h1 has a continuous
extension to the boundary of Ω. Thus h1 has a continuous and non-vanishing
extension to Ω. The same holds for G.

Now, by 4.7, we obtain that h′1 and g′1 are bounded mappings. Thus h′

and g′ are bounded. �

Example 4.8. A harmonic mapping u with respect to the hyperbolic metric
on the unit disk satisfies the following equation

uzz̄ +
2ū

1− |u|2
uz · uz̄ = 0.

As far as we know this equation cannot be solved using the known meth-
ods of PDE; however, we can produce some examples; more precisely, we
characterize real hyperbolic harmonic mappings.

Let

ϕ1(w) =
4

(1− w2)2
.

Using a natural parameter, i.e. a branch of φ1(z) = log z+1
z−1 = 2 arc tanh z,

one can verify that f is ϕ1−harmonic if and only if f = tanh g, where
g is Euclidean harmonic. Since the metric ρ = |ϕ(w)| coincides with the
Poincaré metric

λ =
4

(1− |w|2)2

for real w we obtain that f is real λ- harmonic (hyperbolic harmonic) if
and only if f = 2 tanh g, where g is real Euclidean harmonic. Since the
mappings

w = eiϕ
z − a
1− āz

, a ∈ U,
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are the isometries of Poincaré disc, because of Lemma 3.6, we obtain the
following claim: If h is real harmonic defined on some domain Ω, then the
function

(4.8) w = eiϕ
tanh(h(z))− a

1− ā tanh(h(z))
(|a| < 1)

is harmonic w.r. to hyperbolic metric . Note that the mappings given by
(4.8) have the rank 1 and they map Ω into circular arcs orthogonal on the
unit circle T.

Moreover, if a circle S orthogonal on the unit circle is given and Λ = S∩T,
we can use (4.8) to describe all λ- harmonic mappings between Ω and Λ.
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[18] M. Mateljević, Note on Schwarz lemma, curvature and distance, Zbornik radova PMF
13 (1992) 25-29
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