
ON THE QUASICONFORMAL SELF-MAPPINGS OF THE UNIT
BALL SATISFYING THE PDE ∆u = g

DAVID KALAJ

Abstract. It is proved that the family of K quasiconformal mappings of the
unit ball onto itself satisfying PDE ∆u = g, g ∈ C(Bn), u(0) = 0 is a uniformly
Lipschitz family. In addition is proved that, the Lipschitz constant tends to
1 as K → 1 and |g|∞ → 0. This generalizes a similar two-dimensional case
treated in [11] and solved the problem started in [15]. According to Fefferman’s
theorem, every analytic bi-holomorphic mapping between two smooth domains
has C1 extension to the boundary, and therefore the class of bi-holomorphic
mappings between smooth domains, is contained in the class of harmonic qua-
siconformal mappings (∆u = 0). Therefore our results can be considered as
extensions of Fefferman’s theorem.
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1. Introduction and statement of the main results

A twice differentiable function u defined in an open subset Ω of Euclidean space
Rn will be called harmonic if it satisfies the differential equation

∆u(x) := D11u(x) + D22u(x) + · · ·+ Dnnu(x) = 0.

In this paper Bn denotes the unit ball in Rn, and Sn−1 denotes the unit sphere.
Also we will assume that n > 2 (the case n = 2 has been already treated in [11]).
We will consider vector norm |x| = (

∑n
i=1 x2

i )
1/2 and two matrix norms: trace norm

|A|2 := (trace AAt)1/2 = (
∑n

i,j=1 a2
i,j)

1/2 and induced norm |A| = sup{|Ax| : |x| =
1}.

A homeomorphism u : Ω → Ω′ between two open subsets Ω and Ω′ of Euclid
space Rn will be called a K (K ≥ 1) quasi-conformal or shortly a q.c mapping if

(i) u is absolutely continuous function in almost every segment parallel to some
of the coordinate axes and there exist the partial derivatives which are locally Ln

integrable functions on Ω. We will write u ∈ ACLn and
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(ii) u satisfies the condition

|∇u(x)|n/K ≤ Ju(x) ≤ Kl(∇u(x))n,

at almost everywhere x in Ω where

l(∇u(x)) := inf{|∇u(x)ζ| : |ζ| = 1}
and Ju(x) is the Jacobian determinant of u (see [28]).

Notice that, for a continuous mapping u the condition (i) is equivalent with that
u belongs to the Sobolev space W 1

n,loc(Ω).
Let P be Poisson kernel i.e. the function

P (x, η) =
1− |x|2
|x− η|n ,

and let G be Green function i.e. the function

G(x, y) = cn

(
1

|x− y|n−2
− 1

(|x|y| − y/|y| |)n−2

)
(1.1)

where cn = 1
(n−2)Ωn−1

, and Ωn−1 is the measure of Sn−1. Both P and G are
harmonic for |x| < 1, x 6= y .

Let f : Sn−1 → Rn be a bounded integrable function on the unit sphere Sn−1

and let g : Bn 7→ Rn be continuous. The solution of the equation (in the sense of
distributions) ∆u = g in the unit ball satisfying the boundary condition u|Sn−1 =
f ∈ L1(Sn−1) is given by

u(x) = P [f ](x)−G[g](x) :=
∫

Sn−1
P (x, η)f(η)dσ(η)−

∫

Bn

G(x, y)g(y)dy, (1.2)

|x| < 1. Here dσ is Lebesgue n− 1 dimensional measure of Euclid sphere satisfying
the condition: P [1](x) ≡ 1. It is well known that if f and g are continuous in
Sn−1 and in Bn respectively, then the mapping u = P [f ] − G[g] has a continuous
extension ũ to the boundary and ũ = f on Sn−1.

We will consider those solutions of the PDE ∆u = g that are quasiconformal as
well.

It seems that the family of q.c. harmonic mappings has first been considered in
([20]). Recent papers [12]–[14] and [23] bring much light on the topic of quasicon-
formal harmonic mappings on the plane.

In this paper we continue to study the same problem in the space. It was started
in the paper [15]. The problem in the space is much more complicated because of
lack of the techniques of complex analysis.

The following theorem gives a positive answer to the conjecture raised by the
author in ([15]): that a q.c. harmonic self-mapping of the unit ball is Lipschitz
continuous with Lipschitz constant depending only on a quasiconformality constant
K. It is a generalization of an analogous theorem for the unit disk due to author
and Pavlović ([11]). See also [15]) and [26]. It is the main result of the paper.

Theorem 1.1. Let K ≥ 1 be arbitrary, let n ∈ N and let g ∈ C(Bn). Then
there exist constants M ′

1(n,K) and M ′
2(n, K) such that: if u is K quasiconformal

selfmapping of the unit ball Bn satisfying the PDE ∆u = g, with u(0) = 0 then:

|u(x)− u(y)| ≤ (M ′
1(K, n) + M ′

2(K,n)|g|∞)|x− y|, x, y ∈ Bn. (1.3)

Moreover M ′
1(n, K) → 1 as K → 1.
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It is important to notice that, the class of harmonic functions (mappings) con-
tains itself the class holomorphic functions (mappings). Therefore the class of
harmonic automorphisms of the unit ball is a subclass of harmonic self-mappings
of the unit ball. Having in mind the fact that, they have an extension across the
boundary the unit ball, it follows that they are quasi-conformal. On the other hand
according to Fefferman’s theorem ([6]), every analytic bi-holomorphic mapping be-
tween two smooth domains has C1 extension to the boundary, and therefore the
class of bi-holomorphic mappings between smooth domains, is contained in the class
of harmonic quasiconformal mappings. Therefore our results can be considered as
extensions of Fefferman’s theorem.

The proof of Theorem 1.1, given in Sections 3, depends on the following propo-
sition:

Proposition 1.2. [13] Let u : Bn → Ω be twice differentiable q.c. mapping of the
unit ball onto the bounded domain Ω with C2 boundary satisfying the differential
inequality:

|∆u| ≤ A|∇u|2 + B, A,B ≥ 0.

Then ∇u is bounded and u is Lipschitz continuous.

One of the advantages of Theorem 1.1 in relation to Proposition 1.2 is that, in
Theorem 1.1 the Lipschitz constant do not depend on the mapping u, contrary the
statement of Proposition 1.2.

It also depends on Mori’s theorem in the theory of quasiconformal mappings:

Proposition 1.3. [5] If u is a K quasi-conformal self-mapping of the unit ball
Bn with u(0) = 0, then there exists a constant M1(n,K), satisfying the condition
M1(n,K) → 1 as K → 1, such that

|u(x)− u(y)| ≤ M1(n,K)|x− y|K1/(1−n)
. (1.4)

See also [2] for some constant that is not asymptotically sharp.

The mapping |x|−1+K1/(1−n)
x shows that the exponent K1/(1−n) is optimal in

the class of arbitrary K− quasiconformal homeomorphisms.

2. Auxiliary results

By S and T we denote the spherical coordinates:

S : Kn
0 = [0, 1]× [0, π]× · · · × [0, π]× [0, 2π] 7→ Bn

and

T : Kn−1 = [0, π]× · · · × [0, π]× [0, 2π] 7→ Sn−1

(S(r, θ0, . . . , θn−2, ϕ) = rT (θ1, . . . , θn−2, ϕ)), defined by S = (x1, x2, ..., xn−1),

x1 = r cos θ1,
x2 = r sin θ1 sin θ2,

...
xn = r sin θ1 sin θ2 . . . sin θn−2 cosϕ,

xn+1 = r sin θ1 sin θ2 . . . sin θn−2 sinϕ.

Then we have:

detS′(r, θ1, . . . , θn−2, ϕ) = rn−1 sinn−2 θ1 · · · sin θn−2. (2.1)
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We will use the notations θ = (θ1, . . . , θn−2, ϕ) and θn−1 = ϕ.

Lemma 2.1. Let u be harmonic function defined on the unit ball and assume that
its derivative v = ∇u is bounded on the unit ball (or equivalently, let u be Lipschitz
continuous). Then there exists a mapping A ∈ L∞(Sn−1) defined on the unit sphere
Sn−1 such that ∇u(x) = P [A](x) and for almost every η ∈ Sn−1 there holds the
relation

lim
r→1−

∇u(rη) = A(η). (2.2)

Moreover the function f ◦ T is differentiable almost everywhere in Kn−1 and
there holds

A(T (θ)) · T ′(θ) = (f ◦ T )′(θ).

Proof. For the prof of the first statement of the lemma see for example [1, Theo-
rem 6.13 and Theorem 6.39].

Next, since

| ∂

∂θi
u(S(r, θ))| = |r∇u(S(r, θ))

∂

∂θi
T (θ)| ≤ |r∇u(S(r, θ))| · | ∂

∂θi
T (θ)|

≤ essupθ|A(T (θ))| · | ∂

∂θi
T (θ)|,

the Lebesgue Dominated Convergence Theorem yields
f(T (θ)) = lim

r→1−
u(S(r, θ))

= lim
r→1−

∫ θi

θ0
i

∂

∂θi
u(S(r, θ))dθi + f(T (θ0))

=
∫ θi

θ0
i

lim
r→1−

∂

∂θi
u(rS(θ))dθi + f(T (θ0))

=
∫ θi

θ0
i

lim
r→1−

r∇u(S(r, θ))
∂

∂θi
T (θ)dθi + f(T (θ0))

=
∫ θi

θ0
i

A(T (θ)) · ∂

∂θi
T (θ)dθi + f(T (θ0)).

(2.3)

Differentiating in θi we get for every i ∈ {1, . . . , n− 1}
∂

∂θi
f(T (θ)) = A(T (θ)) · ∂

∂θi
T (θ)

almost everywhere in Kn−1.
Hence we have:

A(T (θ)) · T ′(θ) = (f ◦ T )′(θ)
almost everywhere in Sn−1.

¤

Lemma 2.2. Let u be a harmonic Lipschitz continuous mapping defined in the unit
ball Bn. Denote by ∇u its extension up to the boundary Sn−1 = ∂Bn, which exists
almost everywhere in Sn−1. Then for x ∈ Bn

|∇u(x)| ≤ ess sup|η|=1|∇u(η)|,
where | · | is trace norm or induced norm.
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Proof. Let u = (u1, . . . un). For all (i, j) the function ui,j = ∂ui

∂xj
is bounded and

harmonic. Hence there exists a bounded integrable function gi,j defined on the unit
sphere such that ui,j = P [gi,j ]. In other words

∇u(x) =
∫

Sn−1
g(η)P (x, η)dσ(η)

where g(η) is n× n dimensional matrix (gi,j(η))n
i,j=1 and it coincides with ∇u(η).

By definition, for the trace norm we have

|∇u(x)|22 = trace ∇u(x)∇u(x)t

= trace
∫

Sn−1
g(η)P (x, η)dσ(η)

(∫

Sn−1
g(η)P (x, η)dσ(η)

)t

≤
∫

Sn−1
trace g(η)g(η)tP (x, η)dσ(η).

Hence

|∇u(x)|22 ≤ ess sup{trace g(η)g(η)t : η ∈ Sn−1}
∫

Sn−1
P (x, η)dσ(η)

= ess sup{trace g(η)g(η)t}.
Thus we obtain

|∇u(x)|2 ≤ ess supη∈Sn−1 |∇u(η)|2.
For the induced norm we have

|A| = max{〈Ah, k〉 : |h| = |k| = 1}.
Thus for |h| = |k| = 1 we have

〈∇u(x)h, k〉 =
∫

Sn−1
〈g(η)h, k〉P (x, η)dσ(η)

≤
∫

Sn−1
|g(η)|P (x, η)dσ(η)

≤ ess sup|η|=1 |g(η)|
∫

Sn−1
P (x, η)dσ(η).

The proof is completed. ¤

Lemma 2.3. For every α < n the potential type integral

I(x) =
∫

Bn

dy

|x− y|α
exists for every x ∈ Rn, and achieves its maximum for x = 0. Furthermore:

I(0) =
1

n− α
Ωn−1. (2.4)

If |x| = 1 and α = n− 1, then

I(x) =
2Γ(n

2 )
(n− 1)

√
πΓ(n−1

2 )
Ωn−1. (2.5)

Moreover there exists a decreasing function φ defined on [0, +∞) such that I(x) =
φ(r) on the sphere Sn−1(0, r), r > 0.
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Proof. Let A = Bn \Bn(x, 1) and B = Bn ∩Bn(x, 1). Then Bn = A∪B. If y ∈ A
then |y − x| ≥ |y|. Thus

∫

A

dy

|x− y|α ≤
∫

A

dy

|y|α .

On the other hand B = −B + x. Thus
∫

B

dy

|x− y|α =
∫

B

dy

|y|α .

Hence
I(x) =

∫

Bn

dy

|x− y|α ≤ I(0) =
∫

Bn

dy

|y|α .

Introducing the spherical coordinates centered on 0 and on the point x on the
integrals I(0) and I(x), respectively we obtain the relations (2.4) and (2.5).

Using the similar argument it follows that φ is decreasing.

Lemma 2.4. [15]. The integral

I =
∫

Sn−1
|a− η|γdσ(η),

a ∈ Sn−1 converges if and only if γ > 1− n. If γ = 2− n then I = 1.

¤

Lemma 2.5. Let ρ be a bounded (absolutely) integrable function defined on a
bounded domain Ω ⊂ Rn. Then the potential type integral

I(x) =
∫

Ω

ρ(y)dy

|x− y|α
belongs to the space Cp(Rn), p ∈ N such that α + p < n. Moreover

∇I(x) =
∫

Ω

∇ 1
|x− y|α ρ(y)dy.

For the proof see for example [24, p. 24-26].

Lemma 2.6. If g is continuous on B
n
, then the mapping G[g] has a bounded de-

rivative i.e. it is Lipschitz continuous. Moreover ∇G[g] has a continuous extension
to the boundary and there holds

∇G[g](η)h =
∫

Bn

〈η, h〉
Ωn−1

1− |y|2
|η − y|n g(y)dy,

for η ∈ Sn−1.

Proof. First of all for x 6= y we have

Gx(x, y) = cn
(n− 2)(x− y)
|x− y|n − cn

(n− 2)(|y|2x− y)
|x|y| − y/|y| |n .

Thus we have

lim
x→η

Gx(x, y) =
1

Ωn−1

η(1− |y|2)
|η − y|n . (2.6)

Let
G1(x, y) :=

1
Ωn−1

x− y

|x− y|n , (2.7)
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and let

G2(x, y) :=
1

Ωn−1

y − |y|2x
|x|y| − y/|y| |n . (2.8)

The function G2 is harmonic for x ∈ Bn. According to Lemma 2.5 it follows

∇G[f ](x)h =
∫

Bn

〈Gx(x, y), h〉 g(y) dy

=
∫

Bn

〈G1(x, y), h〉 g(y)dy +
∫

Bn

〈G2(x, y), h〉 g(y)dy.

(2.9)

The last statement of the lemma follows from relations (2.6) and (2.9) and
Lebesgue Dominated Convergence Theorem.

¤

Lemma 2.7. Let u be a solution of the PDE ∆u = g (g ∈ C(Bn)) that maps the
unit ball onto itself properly (|u(x)| → 1 as |x| → 1). Let in addition u be Lipschitz
continuous. Then there exist almost everywhere in Sn−1:

∇u(t) := lim
r→1−

∇u(rt) (2.10)

and
Ju(t) := lim

r→1−
Ju(rt), (2.11)

t ∈ Sn−1, and there holds the following relation:

Ju(t) =
Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)

+
Dχ

DT

∫ 1

0

rn−1(
∫

Sn−1
P (rη, t) 〈g(rt), f(η)〉 dσ(η))dr, t ∈ Sn−1.

(2.12)

Where Dχ and DT are the square roots of Gram determinants of ∇χ and ∇T ,
respectively.

If u is biharmonic (∆∆u = 0), then there holds:

Ju(t) =
Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)

+
Dχ

DT

∫ 1

0

rn−1
〈
g(r2t), f(t)

〉
dr, t ∈ Sn−1.

(2.13)

For arbitrary continuous g and |g| = max|x|≤1 |g(x)| there holds the inequality:

|Ju(t)− Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)| ≤ Dχ

DT

|g|
n

, t ∈ Sn−1. (2.14)

Proof. First of all, according to Lemma 2.6, G[g] has a bounded derivative, and
there exists the function ∇G[g](η), η ∈ Sn−1 which is continuous and satisfies the
limit relation limx→η ∇G[g](x) = ∇G[g](η). Since u = P [f ]−G[g] has bounded de-
rivative, according to the Lemma 2.1 it follows that, there exists limr→1−∇P [f ](rη) =
∇P [f ](η). Thus limr→1−∇u(rη) = ∇u(η).
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It follows that the mapping χ: χ(θ) = f(T (θ)) := f(t), t ∈ Sn−1, defines
the outer normal vector field nχ almost everywhere in Sn−1 at the point χ(θ) =
f(T (θ)) = (χ1, χ2, . . . , χn) by the formula:

nχ(χ(θ)) = χθ1 × · · · × χθn−2 × χϕ. (2.15)

Since nχ(χ(θ)) is the normal vector to the unit sphere, there holds the equality:

nχ(χ(θ)) = Dχ · f(T (θ)). (2.16)

Let u(S(r, θ)) = (y1, y1, . . . , yn), where S are spherical coordinates. According to
Lemma 2.1, we obtain:

lim
r→1−

yiϕ(r, θ) = χiϕ(θ), i ∈ {1, . . . , n}, (2.17)

lim
r→1−

yiθj
(r, θ) = χiθj

(θ), i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 2}. (2.18)

On the other hand, for almost every θ ∈ Sn−1 we have

χi(θ)− yi(r, θ)
1− r

= yir(ρr,θ, θ)

where r < ρr,θ < 1. Thus we have:

lim
r→1−

yir(r, θ) = lim
r→1−

χi(θ)− yi(r, θ)
1− r

, i ∈ {1, . . . , n}. (2.19)

Hence we derive

lim
r→1−

Ju◦S(r, θ) = lim
r→1−

〈
χ− P [f ]

1− r
, χθ1 × · · · × χθn−2 × χϕ

〉
+ Λ

= lim
r→1−

∫

Sn−1

1 + r

|η − rt|n
〈
χ− f(η), χθ1 × · · · × χθn−2 × χϕ

〉
dσ(η) + Λ

= lim
r→1−

∫

Sn−1

1 + r

|η − S(r, θ)|n 〈f(T (θ))− f(η),nf◦T (T (θ))〉 dσ(η) + Λ

= lim
r→1−

Dχ(θ)
∫

Sn−1

1 + r

|η − S(r, θ)|n 〈f(T (θ))− f(η), f(T (θ))〉 dσ(η) + Λ

= lim
r→1−

1 + r

2
Dχ(θ)

∫

Sn−1

|f(T (θ))− f(η)|2
|η − S(r, θ)|n dσ(η) + Λ.

(2.20)

Where Λ = limr→1−
〈

G[g]
1−r , χθ1 × · · · × χθn−2 × χϕ

〉
.

In order to estimate Λ, observe first that:

G(x, y) = cn
|x|y| − y/|y| |n−2 − |x− y|n−2

|x− y|n−2 · |x|y| − y/|y| |n−2
. (2.21)

Next
|x|y| − y/|y| |n−2 − |x− y|n−2

= (|x|y| − y/|y| | − |x− y|)
n−2∑

k=1

(|x|y| − y/|y| |)n−2−k · |x− y|n−2−k,
(2.22)

and
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|x|y| − y/|y| | − |x− y| = |x|y| − y/|y| |2 − |x− y|2
|x|y| − y/|y| |+ |x− y|

=
(1 + |x|2|y|2 − 2 〈x, y〉)− (|x|2 + |y|2 − 2 〈x, y〉)

|x|y| − y/|y| |+ |x− y|

=
(1− |x|2)(1− |y|2)

|x|y| − y/|y| |+ |x− y| .

(2.23)

Inserting (2.22) and (2.23) into (2.21) we obtain:

lim
x→t

G(x, y)
1− |x| =

1
Ωn−1

P (y, t). (2.24)

On the other hand we have

1
Ωn−1

∫

Bn

P (y, t) 〈g(y), f(t)〉 dy =
∫ 1

0

rn−1(
∫

Sn−1
P (rη, t) 〈g(rη), f(t)〉 dσ(η))dr.

(2.25)
Next, there holds

Ju◦S(r, θ) = rn−1Ju(rT (θ)) ·DT (θ). (2.26)

Combining (2.20), (2.24), (2.25) and (2.26) we obtain (2.12). Relations (2.13) and
(2.14) follow form (2.12) and (1.2). If u is biharmonic, then g is harmonic and thus

∫

Sn−1
P (rη, t) 〈g(rη), f(t)〉 dσ(η) =

〈
g(r2t), f(t)

〉
.

This yields the relation (2.13). ¤

Assume A is an n × n matrix with entries from R. Define the (i, j)-minor Mi,j

of A as the determinant of the (n− 1)× (n− 1) matrix that results from deleting
row i and column j of A, and the i, j cofactor of A as

Cij = (−1)i+jMij .

Then the adjugate of A is the n× n matrix

Ã = (Cji)n
i,j=1 .

I if A is an invertible matrix then

A−1 = det(A)−1 Ã.

That is, the adjugate of A is the transpose of the ”cofactor matrix” (Cij)n
i,j=1 of

A.

Lemma 2.8. Let A : Rn → Rn be a linear operator such that A = [aij ]i,j=1,...,n. If
A is K quasiconformal, then there hold the following double inequality

K1−n|A|n−1|x1×· · ·×xn−1| ≤ |Ax1×· · ·×Axn−1| ≤ |A|n−1|x1×· · ·×xn−1|. (2.27)

Both inequalities in (2.27) are sharp.
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Proof. Let xi =
∑n

j=1 xijej , i = 1, . . . n− 1. Then

Ax1 × · · · ×Axn−1 =
∑

σ

εσx1,σ1 . . . xn−1σn−1Ae1 × · · · ×Aen−1.

It follows that

Ax1 × · · · ×Axn−1 = Ãx1 × · · · × xn−1. (2.28)

As A is K quasiconformal, Ã is quasiconformal as well. Namely from Ã =
detA ·A−1, it follows that

λ̃k = det A · 1
λk

, and λ̃n ≤ λ̃n−1 ≤ · · · ≤ λ̃1

and consequently
λ̃1

λ̃n

≤ K.

From (2.28) we obtain

|Ax1 × · · · ×Axn−1| ≤ |Ã| · |x1 × · · · × xn−1|. (2.29)

Furthermore

|Ã| = λ̃1 =
detA

λ1
=

n∏

k=2

λk ≤ λn−1
n = |A|n−1. (2.30)

Equations (2.29) and (2.30) yields the right inequality of (2.27).
To obtain the left inequality of (2.27) we make use of (2.28) again. From (2.28)

it follows that
|Ax1 × · · · ×Axn−1| ≥ λ̃n · |x1 × · · · × xn−1|. (2.31)

On the other hand

λ̃n =
det A

λn
=

n−1∏

k=1

λk ≥ Kn−1λn−1
n .

This inequality completes the proof of lemma.
¤

Lemma 2.9. Let u be a solution of the PDE ∆u = g, g ∈ C(B
n
), that is Lipschitz

continuous. Denote by ∇u its extension up to the boundary Sn−1 = ∂Bn, which
exists almost everywhere in Sn−1. Then for x ∈ Bn

|∇u(x)| ≤ ess sup|η|=1|∇u(η)|+
(

1 +
2Γ(n

2 )
(n− 1)

√
πΓ(n−1

2 )
Ωn−1

)
|g|, (2.32)

where | · | is any norm of matrices and |g| = max{|g(x)|, x ∈ B
n}.

Proof. By taking the notation of Lemma 2.6 we have

∇u = ∇P [f ](x)−∇G[g](x)

= ∇P [f ](x)−
∫

Bn

G1(x, y)g(y)dy −
∫

Bn

G2(x, y)g(y)dy.

Thus

∇u(x) +
∫

Bn

G1(x, y)g(y)dy = ∇P [f ](x)−
∫

Bn

G2(x, y)g(y)dy =: h(x).
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Applying Lemma 2.2 to the harmonic mapping h, we have

|∇u(x) +
∫

Bn

G1(x, y)g(y)dy| ≤ ess sup|t|=1|h(t)|

≤ ess sup|t|=1|∇u(t)|+ sup
|t|=1

|
∫

Bn

G1(t, y)g(y)dy|.

Hence for x ∈ Bn we have

|∇u(x)| ≤ ess sup
|t|=1

|∇u(t)|+ ess sup|x|≤1|
∫

Bn

G1(x, y)g(y)dy|

+ ess sup|t|=1

∫

Bn

|G1(t, y)||g(y)|dy.

Using now Lemma 2.3 we have

|∇u(x)| ≤ ess sup|t|=1|∇u(t)|+ (1 +
2Γ(n

2 )
(n− 1)

√
πΓ(n−1

2 )
Ωn−1)|g|.

¤

Remark 2.10. It is known that harmonic and subharmonic functions satisfy the
maximum principle. However, if u ∈ C2(Bn) ∩ C1(Bn) satisfies the PDE ∆u = g,
with

g ∈ C1(Ω), 〈∇u,∇g〉 ≤ |g|2
n

, (2.33)

then the mapping ∇u satisfies the maximum principle

sup
Bn

|∇u(x)| = sup
Sn−1

|∇u(x)|. (2.34)

This estimate is better than the estimate (2.32), but the condition (2.33) is an
essential one. For the details see [8, Theorem 15.1].

Lemma 2.11. If x ≥ 0 is a solution of the inequality x ≤ axα + b, where a ≥ 1
and 0 ≤ aα < 1, then

x ≤ a + b− αa

1− αa
. (2.35)

Observe that for α = 0 (2.35) coincides with x ≤ a + b i.e. x ≤ axα + b.

Proof. We will use the Bernoulli’s inequality. x ≤ axα + b = a(1 + x − 1)α + b ≤
a(1 + α(x− 1)) + b. The relation (2.35) now easily follows. ¤

3. The main results

Theorem 3.1. Let K ≥ 1 be arbitrary and n ∈ N and let g ∈ C(Bn). Then there
exists a constant M ′ = M ′(n,K) such that:

if u is K quasiconformal selfmapping of the unit ball Bn satisfying the PDE
∆u = g, with u(0) = 0 then:

|u(x)− u(y)| ≤ M ′|x− y|, x, y ∈ Bn, (3.1)

where M ′ = M ′
1(K, n)+M ′

2(K, n)|g|. Moreover if u is harmonic then M ′(n,K) → 1
as K → 1.
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Proof. Let u(S(r, θ)) = (y1, y1, . . . , yn), where S are the spherical coordinates.
Combining the Proposition 1.2 and Lemma 2.7, in the special case where the co-
domain is the unit ball, we obtain that there exists ∇u, and Ju almost everywhere
in Sn−1 and there holds the following inequality:

Ju(t) ≤ Dχ

DT

(∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η) +

|g|
n

)
, t ∈ Sn−1. (3.2)

Now from

|∇u(S(r, θ))|n ≤ KJu(S(r, θ)),

we obtain

lim
r→1−

|∇u(S(r, θ))|n ≤ lim
r→1−

KJu(S(r, θ)), (3.3)

almost everywhere in Kn−1. From Lemma 2.1, we deduce that

lim
r→1−

∂u ◦ S

∂θ1
(r, θ)× · · · × ∂u ◦ S

∂θn−2
(r, θ)× ∂u ◦ S

∂ϕ
(r, θ)

=
∂f ◦ T

∂θ1
(θ)× · · · × ∂f ◦ T

∂θn−2
(θ)× ∂f ◦ T

∂ϕ
(θ)

almost everywhere in Kn−1. Since

∂u ◦ S

∂θi
(r, θ) = ru′(S(r, θ))

∂T

∂θi
,

using (2.27) we obtain that

Dχ(θ) ≤ lim
r→1−

|∇u(S(r, θ))|n−1DT (θ). (3.4)

From (3.2)-(3.4) we infer that

|∇u(T (θ))|n ≤ K|∇u(T (θ)|n−1

(∫

Sn−1

|f(T (θ))− f(η)|2
|η − T (θ)|n dσ(η) +

|g|
n

)

i.e.

|∇u(T (θ))| ≤ K

(∫

Sn−1

|f(T (θ))− f(η)|2
|η − T (θ)|n dσ(η) +

|g|
n

)
. (3.5)

In view of Lemma 2.9, for every ε > 0 there exists θε ∈ Kn−1 such that:

M : = ess sup{|∇u(x)| : |x| < 1}

≤ (1− ε)−1

(
|∇u(T (θε))|+ (1 +

2Γ(n
2 )

(n− 1)
√

πΓ(n−1
2 )

Ωn−1)|g|
)

.
(3.6)

The mean value theorem yields

|u(x)− u(y)| ≤ sup
t∈Bn

|∇u(t)| · |x− y|. (3.7)

Let µ = K1/(1−n). It is clear that 0 < µ ≤ 1. Let γ = 1−n+µ2, and let ν = 1−µ.
Now applying the relation (3.5) for θ = θε, and using (1.4), (3.6) and (3.7), we
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obtain

(1− ε)M − (1 +
2Γ(n

2 )
(n− 1)

√
πΓ(n−1

2 )
Ωn−1)|g|

≤ K

(
(Ml)ν

∫

Sn−1
|η − T (θε)|γ |f(T (θε))− f(η)|2−ν

|T (θε)− η|µ2+µ
dσ(η) +

|g|
n

)

≤ K(Ml)νM1(K,n)1+µ

∫

Sn−1
|η − T (θε)|γdσ(η) + K

|g|
n

.

Letting ε → 0 we obtain

M ≤ M2(K,n)Mν + M3(K, n)|g|,
where

M2(K, n) = KlνM1(K,n)1+µ

∫

Sn−1
|η − T (θ0)|γdσ(η)

and

M3(K,n) = (1 +
2Γ(n

2 )
(n− 1)

√
πΓ(n−1

2 )
Ωn−1) +

K

n
.

First of all, there holds

M ≤ M4 := (M2(K) + M3(K, n)|g|)1/(1−ν) = (M2(K) + M3(K,n)|g|)K
. (3.8)

If νM2(K) < 1, from Lemma 2.11 we obtain

M ≤ M5 :=
M2(K, n) + M3(K,n)|g| − νM2(K, n)

1− νM2(K,n)
. (3.9)

Therefore the inequality (3.1) does hold for

M ′ = min({M4} ∪ {M5 : νM2(K) < 1}).
Using (1.4), Lemma 2.8 and Lemma 2.4, it follows that limK→1 M ′(K, n) = 1 if
g = 0. ¤

Concerning the co-Lipschitz character of these mappings we have the following
partial result.

Theorem 3.2. Let K < 2n−1 and assume that u is a K−q.c. solution of PDE
∆u = g that maps the unit ball onto itself satisfying the following conditions:

i) u ∈ C1(Bn),
ii) g ∈ C(Bn) such that |g|∞ < M0(K, n) where M0(K, n) is given in (3.14).
Then u is co-Lipschitz.

Proof. From (2.14) we obtain

Ju(t) ≥ Dχ

DT

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)− Dχ

DT

|g|
n

, t ∈ Sn−1. (3.10)

Using (2.27) we obtain

K1−n lim
r→1−

|∇u(S(r, θ))|n−1 ≤ Dχ

DT
≤ lim

r→1−
|∇u(S(r, θ))|n−1. (3.11)

Combining (3.10) and (3.11) it follows that
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lim
r→1−

|∇u(S(r, θ))|n ≥ K1−n| lim
r→1−

|∇u(S(r, θ))|n−1

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)

− lim
r→1−

|∇u(S(r, θ))|n−1 |g|
n

, t ∈ Sn−1,

i.e.

lim
r→1−

|∇u(S(r, θ))| ≥ K1−n

∫

Sn−1

|f(t)− f(η)|2
|η − t|n dσ(η)− |g|

n
, t ∈ Sn−1. (3.12)

As u−1 is K-q.c, using (1.4) and (3.12) one gets

lim
r→1−

|∇u(S(r, θ))| ≥ M0(K, n)− |g|
n

, t ∈ Sn−1, (3.13)

where

M0(K, n) =
∫

Sn−1

nK1−n(M1(K, n))2K1/(1−n)

|η − t|n−2K1/(n−1) dσ(η). (3.14)

The rest of the proof follows from the condition i) and [18, Lemma 4.5].
¤

3.1. Examples of q.c. mappings satisfying PDE ∆u = g. In the following
example (a), it is shown that for the class of radial twice differentiable q.c. self-
mapping of the unit ball (which is quite large), Theorem 3.1 yields also a sufficient
condition. In its particular case (b) is shown that the condition K < 2n of Theo-
rem 3.2, is the best possible.

a) Define u(x) = h(|x|)x, where r 7→ rh(r) is a twice differentiable diffeomor-
phism of [0, 1) onto itself. Then, for r = |x|,

Ju(x) = hn(r)
(

1 +
h′(r)
h(r)

r

)
, (3.15)

and

|∇u(x)|n = hn(r)
(

1 +
h′(r)
h(r)

r

)n

. (3.16)

From (3.15) and (3.16) we obtain

|∇u(x)|n
Ju(x)

=
(

1 +
h′(r)
h(r)

r

)n−1

.

Thus u is a selfmapping of the unit ball satisfying PDE

∆u(x) = g(x) :=
(

h′′(r) +
(n + 1)h′(r)

r

)
x,

and it is quasiconformal if and only if

lim sup
r→1

h′(r) < ∞, (3.17)

or what is the same if and only if |∇u(x)| is bounded.
b) In particular, take u(x) = |x|αx, with α ≥ 1. Then

Ju(x) = (1 + α)|x|nα, (3.18)

and
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|∇u(x)| = (α + 1)|x|α. (3.19)
By (3.18) and (3.19) it follows that

|∇u(x)|n
Ju(x)

= (α + 1)n−1.

Therefore u is twice differentiable (1+α)n−1-quasiconformal self-mapping of the
unit ball with Ju(0) = 0. This means that the constant 2n−1 is the best possible.

3.2. Remarks. It is well known that the harmonic extension (via Poisson integral)
of a homeomorphism of the unit circle is always a diffeomorphism of the unit disk.
In higher dimensions, however, the situation is quite different. Namely Melas ([22]
see also [16])) constructed a homeomorphism of the unit sphere Sn−1 (n ≥ 3) whose
harmonic extension fails to be diffeomorphic. The questions arises, do there exist
such examples, assuming both conditions, harmonicity and quasiconformality; in
other words do some q.c. harmonic mappings have critical points i.e. the points
in which the Jacobian is zero? It seems that for K ≤ 2n−1, such example do not
exists. In [19] and [3] is treated this problem in the complex plane. For this problem
concerning, hyperbolic harmonic mappings between surfaces see [29] and [17], and
for q.c. hyperbolic harmonic selfmapping of the unit ball see [18].
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